1
|
Lee Y, Byeon E, Lee JS, Maszczyk P, Kim HS, Sayed AEDH, Yang Z, Lee JS, Kim DH. Differential susceptibility to hypoxia in hypoxia-inducible factor 1-alpha (HIF-1α)-targeted freshwater water flea Daphnia magna mutants. MARINE POLLUTION BULLETIN 2024; 209:117138. [PMID: 39486200 DOI: 10.1016/j.marpolbul.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
The water flea, Daphnia magna, serves as a key model organism for investigating the response of aquatic organisms to environmental stressors, including hypoxia. Hypoxia-inducible factor 1-alpha (HIF-1α) is a central regulatory protein involved in the cellular response to hypoxic conditions. In this study, we used CRISPR/Cas9 gene editing to create D. magna mutant lines with targeted alterations in the HIF-1α gene. Mutants demonstrated decreased survival and reproductive output and down-regulated genes for the HIF-1α-mediated pathway in low-oxygen conditions. These findings suggest that the HIF-1α pathway is a critical component of resistance to hypoxia in D. magna. This study provides novel insights into the molecular basis of hypoxia tolerance of HIF-1α in D. magna and expands our understanding of how aquatic organisms can adapt to or be challenged by changing oxygen levels in the face of global environmental changes.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Neculae A, Barnett ZC, Miok K, Dalosto MM, Kuklina I, Kawai T, Santos S, Furse JM, Sîrbu OI, Stoeckel JA, Pârvulescu L. Living on the edge: Crayfish as drivers to anoxification of their own shelter microenvironment. PLoS One 2024; 19:e0287888. [PMID: 38165988 PMCID: PMC10760702 DOI: 10.1371/journal.pone.0287888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/14/2023] [Indexed: 01/04/2024] Open
Abstract
Burrowing is a common trait among crayfish thought to help species deal with adverse environmental challenges. However, little is known about the microhabitat ecology of crayfish taxa in relation to their burrows. To fill this knowledge gap, we assessed the availability of oxygen inside the crayfish shelter by series of in-vivo and in-silico modelling experiments. Under modeled condition, we found that, except for the entrance region of the 200 mm, a flooded burrow microenvironment became anoxic within 8 h, on average. Multiple 12-hour day-night cycles, with burrows occupied by crayfish for 12 h and empty for 12 h, were not sufficient for refreshing the burrow microenvironment. We then examined the degree to which crayfish species with different propensities for burrowing are tolerant of self-created anoxia. From these experiments, primary and secondary burrowers showed best and most consistent tolerance-exhibiting ≥ 64% survival to anoxia and 25-91% survival of ≥ 9 h at anoxia, respectively. Tertiary burrowers exhibited little to no tolerance of anoxia with 0-50% survival to anoxia and only one species exhibiting survival (2%) of ≥ 9 h at anoxia. Results suggest that moderate to strongly burrowing crayfish can quickly draw down the dissolved oxygen in burrow water but appear to have conserved a legacy of strong tolerance of anoxia from their monophyletic ancestors-the lobsters-whereas tertiary burrowers have lost (or never evolved) this ability.
Collapse
Affiliation(s)
- Adrian Neculae
- Faculty of Physics, West University of Timisoara, Timisoara, Romania
| | - Zanethia C. Barnett
- Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, Oxford, MS, United States of Ameirca
| | - Kristian Miok
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Marcelo M. Dalosto
- Laboratório de Carcinologia, Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Iryna Kuklina
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Tadashi Kawai
- Central Fisheries Research Institute, Yoichi, Hokkaido, Japan
| | - Sandro Santos
- Laboratório de Carcinologia, Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - James M. Furse
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Ovidiu I. Sîrbu
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - James A. Stoeckel
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, United States of America
| | - Lucian Pârvulescu
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| |
Collapse
|
3
|
Wang F, Yang Z, Li J, Ma Y, Tu Y, Zeng X, Wang Q, Jiang Y, Huang S, Yi Q. The involvement of hypoxia inducible factor-1α on the proportion of three types of haemocytes in Chinese mitten crab under hypoxia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104598. [PMID: 36511346 DOI: 10.1016/j.dci.2022.104598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia triggers diverse cell physiological processes, and the hypoxia inducible factors (HIFs) are a family of heterodimeric transcription factors that function as master regulators to respond to hypoxia in different cells. However, the knowledge about the hypoxic responses especially cell alteration mediated by HIFs under hypoxia stress is still limited in crustaceans. In the present study, a hypoxia-inducible factor-1α (HIF-1α) gene was identified (designed as EsHIF-1α). The relative mRNA expression level of EsHIF-1α was highest in hyalinocytes and lowest in granulocytes among three types of haemocytes in crabs. Hypoxia could significantly increase the EsHIF-1α protein expression level in haemocytes. Meanwhile, the proportion of hyalinocytes began to increase from 3 h post hypoxia treatment, and reached the highest level at 24 h. However, the opposite variation in proportion of granulocytes was observed under hypoxia stress. Further investigation showed that the inhibition of EsHIF-1α induced by KC7F2 (HIF-1α inhibitor) could lead to the significant decrease in the proportion of hyalinocytes under hypoxia stress, and also resulted in an increase of granulocytes proportion. While, after EsHIF-1α was activated by IOX4 (HIF-1α activator), the proportion of hyalinocytes was significantly up-regulated and the proportion of granulocytes was significantly down-regulated under post hypoxia treatment. These results collectively suggested that EsHIF-1α was involved in the regulation of proportion of three types of haemocytes induced by hypoxia stress, which provided vital insight into the understanding of the crosstalk between hypoxia and cell development in invertebrates.
Collapse
Affiliation(s)
- Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Tu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Xiaorui Zeng
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Qingyao Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| |
Collapse
|
4
|
Gupta A, Breedon SA, Storey KB. Activation of p53 in anoxic freshwater crayfish, Faxonius virilis. J Exp Biol 2022; 225:275712. [DOI: 10.1242/jeb.244145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Tumor suppressing transcription factor p53 regulates multiple pathways including DNA repair, cell survival, apoptosis, and autophagy. The current work studies stress-induced activation of p53 in anoxic crayfish (Faxonius virilis). Relative levels of target proteins and mRNAs involved in the DNA damage response was measured in normoxic control and anoxic hepatopancreas and tail muscle. Phosphorylation levels of p53 was assessed using immunoblotting at sites known to be phosphorylated (Serine 15 and 37) in response to DNA damage or reduced oxygen signaling. The capacity for DNA binding by phospho-p53 was also measured, followed by transcript analysis of a potentially pro-apoptotic downstream target, the etoposide induced (ei24) gene. Following this, both inhibitor (MDM2) and activator (p19-ARF) protein levels in response to low oxygen stress were studied. The results showed an increase in p53 levels during anoxia in both hepatopancreases and tail muscle. Increased transcript levels of ei24, a downstream target of p53, support the activation of p53 under anoxic stress. Cytoplasmic accumulation of Ser-15 p-p53 was observed during anoxia when proteins from cytoplasmic and nuclear fractions were measured. Increased cytoplasmic concentration is known to initiate an apoptotic response, which can be assumed as a preparatory step to prevent autophagy. The results suggest that p53 might play a protective role in crayfish defense against low oxygen stress. Understanding how anoxia-tolerant organisms are able to protect against DNA damage could provide important clues towards survival under metabolic rate depression and preparation for recovery to minimize damage.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | - Sarah A. Breedon
- Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | | |
Collapse
|
5
|
de Lima TM, Nery LEM, Maciel FE, Ngo-Vu H, Kozma MT, Derby CD. Oxygen sensing in crustaceans: functions and mechanisms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:1-15. [PMID: 33392718 DOI: 10.1007/s00359-020-01457-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022]
Abstract
Animals that live in changing environments need to adjust their metabolism to maintain body functions, and sensing these changing conditions is essential for mediating the short- and long-term physiological and behavioral responses that make these adjustments. Previous research on nematodes and insects facing changing oxygen levels has shown that these animals rapidly respond using atypical soluble guanylyl cyclases (sGCs) as oxygen sensors connected to downstream cGMP pathways, and they respond more slowly using hypoxia-inducible transcription factors (HIFs) that are further modulated by oxygen-sensing prolyl hydroxylases (PHs). Crustaceans are known to respond in different ways to hypoxia, but the mechanisms responsible for sensing oxygen levels are more poorly understood than in nematodes and insects. Our paper reviews the functions of and mechanisms underlying oxygen sensing in crustaceans. Furthermore, using the oxygen sensing abilities of nematodes and insects as guides in analyzing available crustacean transcriptomes, we identified orthologues of atypical sGCs, HIFs, and PHs in crustaceans, including in their chemosensory organs and neurons. These molecules include atypical sGCs activated by hypoxia (Gyc-88E/GCY-31 and Gyc-89D/GCY-33) but not those activated by hyperoxia (GCY-35, GCY-36), as well as orthologues of HIF-α, HIF-β, and PH. We offer possible directions for future research on oxygen sensing by crustaceans.
Collapse
Affiliation(s)
- Tábata Martins de Lima
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS, 96201-300, Brazil.
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS, 96201-300, Brazil
| | - Fábio Everton Maciel
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS, 96201-300, Brazil
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Mihika T Kozma
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.,Department of Biology, Colorado State University, Ft. Collins, CO, USA
| | - Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
6
|
de Lima TM, de Ramos B, de Souza Tavares M, Leidens D, Ayres BS, Maciel FE, Nery LEM. Emersion behavior of the semi-terrestrial crab Neohelice granulata during hypoxic conditions: Lactate as a trigger. Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110835. [PMID: 33144155 DOI: 10.1016/j.cbpa.2020.110835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/26/2022]
Abstract
Climate changes affecting aquatic environments are increasing, and the resultant environmental challenges require animals to adopt alternative compensatory behavioral and physiological strategies. In particular, low levels of dissolved O2 are a regular problem for estuarine animals, leading to activation of a series of behavioral and physiological responses. This study on the semi-terrestrial crab Neohelice granulata examined patterns of emersion behavior under different levels of dissolved O2 availability and the role of lactate in this behavior. Emersion behavior was recorded for 4.5 h for crabs in water at four different levels of dissolved O2 (6, 3, 2, and 1 mg O2/L) and with free access to air. Oxygen consumption and hemolymphatic lactate levels were measured using the same experimental design. Emersion behavior was also recorded for 70 min in normoxic water after lactate or saline injections. Crabs increased their emersion behavior only in severe hypoxia (1 mg O2/L), and O2 consumption decreased under more severe hypoxic conditions. Despite the increase in emersion behavior, which leads to higher O2 availability, an increase in hemolymphatic lactate levels indicates that the animals still need to resort to anaerobic pathways to fulfill their metabolic demand. Furthermore, animals injected with lactate showed higher emersion behaviors than animals injected with a saline solution even in normoxia. These results suggest that the increase in hemolymphatic lactate can act directly or indirectly as a trigger for the increase in emersion behavior in the semi-terrestrial crab N. granulata.
Collapse
Affiliation(s)
- Tábata Martins de Lima
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil.
| | - Bruna de Ramos
- Programa de Pós-Graduação em Gerenciamento Costeiro, Instituto de Oceanografia, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| | - Margarita de Souza Tavares
- Instituto de Oceanografia, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| | - Danusa Leidens
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| | - Bruna Soares Ayres
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| | - Fábio Everton Maciel
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália, Km 8, Rio Grande, RS 96201-300, Brazil
| |
Collapse
|
7
|
Falconer TRL, Marsden ID, Hill JV, Glover CN. Does physiological tolerance to acute hypoxia and salinity change explain ecological niche in two intertidal crab species? CONSERVATION PHYSIOLOGY 2019; 7:coz086. [PMID: 31798883 PMCID: PMC6882270 DOI: 10.1093/conphys/coz086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/14/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Intertidal biota is subjected to significant fluctuations in environmental parameters such as salinity and dissolved oxygen (DO). In the current study, the effects of salinity and DO on metabolic rate, critical oxygen partial pressure (P crit), heart rate and osmoregulation in two intertidal crab species commonly found on New Zealand coastlines, Hemigrapsus crenulatus and Hemigrapsus sexdentatus, were measured. Based on its habitation of burrows in the lower intertidal zone, H. crenulatus was predicted to be more resilient to these environmental stressors than H. sexdentatus, which is distributed in the mid to high tidal zone. However, relative to the full-strength seawater control, there were no consistent salinity-dependent changes in respiratory or cardiovascular endpoints in either species following acute 6-h exposures mimicking a tidal cycle. Analysis of haemolymph osmolality and ions determined that both crab species were strong osmotic and ionic regulators over the 6-h exposure period. However, the threshold salinities at which significant changes in osmotic and ionic regulation occurred did differ and generally indicated that H. crenulatus was the better regulator. Respiratory and cardiovascular responses to DO were prominent, with a strong bradycardia observed in both species. Changes in osmolality and sodium ion regulation were also seen as DO declined. The effect on sodium ion levels had its onset at a higher oxygen partial pressure in H. sexdentatus than in H. crenulatus, indicative of a relatively poorer hypoxia tolerance in the former species. The relative resilience of respiratory, cardiovascular and osmoregulatory processes to salinity and DO variations likely contribute to distinct habitat distributions of the two crab species on New Zealand shorelines, although behaviour and inter-specific interactions may also play important roles. Environmental change, in the form of coastal erosion and anthropogenic contamination of estuaries, has the potential to disturb the delicate niche separation that exists between these species.
Collapse
Affiliation(s)
- Thomas R L Falconer
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Islay D Marsden
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jonathan V Hill
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, 1 University Dr. Athabasca, Alberta T9S 3A3, Canada
- Department of Biological Sciences, University of Alberta, 11445 Saskatchewan Dr. Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|