1
|
Tang G, Wang X, Huang H, Xu M, Ma X, Miao F, Lu X, Zhang CJ, Gao L, Zhang ZM, Yao SQ. Small Molecule-Induced Post-Translational Acetylation of Catalytic Lysine of Kinases in Mammalian Cells. J Am Chem Soc 2024; 146:23978-23988. [PMID: 39162335 DOI: 10.1021/jacs.4c07181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Reversible lysine acetylation is an important post-translational modification (PTM). This process in cells is typically carried out enzymatically by lysine acetyltransferases and deacetylases. The catalytic lysine in the human kinome is highly conserved and ligandable. Small-molecule strategies that enable post-translational acetylation of the catalytic lysine on kinases in a target-selective manner therefore provide tremendous potential in kinase biology. Herein, we report the first small molecule-induced chemical strategy capable of global acetylation of the catalytic lysine on kinases from mammalian cells. By surveying various lysine-acetylating agents installed on a promiscuous kinase-binding scaffold, Ac4 was identified and shown to effectively acetylate the catalytic lysine of >100 different protein kinases from live Jurkat/K562 cells. In order to demonstrate that this strategy was capable of target-selective and reversible chemical acetylation of protein kinases, we further developed six acetylating compounds on the basis of VX-680 (a noncovalent inhibitor of AURKA). Among them, Ac13/Ac14, while displaying excellent in vitro potency and sustained cellular activity against AURKA, showed robust acetylation of its catalytic lysine (K162) in a target-selective manner, leading to irreversible inhibition of endogenous kinase activity. The reversibility of this chemical acetylation was confirmed on Ac14-treated recombinant AURKA protein, followed by deacetylation with SIRT3 (a lysine deacetylase). Finally, the reversible Ac13-induced acetylation of endogenous AURKA was demonstrated in SIRT3-transfected HCT116 cells. By disclosing the first cell-active acetylating compounds capable of both global and target-selective post-translational acetylation of the catalytic lysine on kinases, our strategy could provide a useful chemical tool in kinase biology and drug discovery.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xuan Wang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xingyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fengfei Miao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
2
|
Brodie G, Conway SJ. Disarming Gram-Negative Bacteria in the Fight Against Antimicrobial Resistance. ACS CENTRAL SCIENCE 2023; 9:2179-2182. [PMID: 38161370 PMCID: PMC10755844 DOI: 10.1021/acscentsci.3c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Affiliation(s)
- Glen Brodie
- Department of Chemistry & Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United
States
| | - Stuart J. Conway
- Department of Chemistry & Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United
States
| |
Collapse
|
3
|
Schiedel M, McArdle DJB, Padalino G, Chan AKN, Forde-Thomas J, McDonough M, Whiteland H, Beckmann M, Cookson R, Hoffmann KF, Conway SJ. Small Molecule Ligands of the BET-like Bromodomain, SmBRD3, Affect Schistosoma mansoni Survival, Oviposition, and Development. J Med Chem 2023; 66:15801-15822. [PMID: 38048437 PMCID: PMC10726355 DOI: 10.1021/acs.jmedchem.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Schistosomiasis is a disease affecting >200 million people worldwide, but its treatment relies on a single agent, praziquantel. To investigate new avenues for schistosomiasis control, we have conducted the first systematic analysis of bromodomain-containing proteins (BCPs) in a causative species, Schistosoma mansoni. Having identified 29 putative bromodomains (BRDs) in 22 S. mansoni proteins, we selected SmBRD3, a tandem BRD-containing BCP that shows high similarity to the human bromodomain and extra terminal domain (BET) family, for further studies. Screening 697 small molecules identified the human BET BRD inhibitor I-BET726 as a ligand for SmBRD3. An X-ray crystal structure of I-BET726 bound to the second BRD of SmBRD3 [SmBRD3(2)] enabled rational design of a quinoline-based ligand (15) with an ITC Kd = 364 ± 26.3 nM for SmBRD3(2). The ethyl ester pro-drug of compound 15 (compound 22) shows substantial effects on sexually immature larval schistosomula, sexually mature adult worms, and snail-infective miracidia in ex vivo assays.
Collapse
Affiliation(s)
- Matthias Schiedel
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Darius J. B. McArdle
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Gilda Padalino
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Anthony K. N. Chan
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Michael McDonough
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Helen Whiteland
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Manfred Beckmann
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Rosa Cookson
- GlaxoSmithKline
R&D, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Karl F. Hoffmann
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| |
Collapse
|
4
|
Russell C, Carter JL, Borgia JM, Bush J, Calderón F, Gabarró R, Conway SJ, Mottram JC, Wilkinson AJ, Jones NG. Bromodomain Factor 5 as a Target for Antileishmanial Drug Discovery. ACS Infect Dis 2023; 9:2340-2357. [PMID: 37906637 PMCID: PMC10644352 DOI: 10.1021/acsinfecdis.3c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Leishmaniases are a collection of neglected tropical diseases caused by kinetoplastid parasites in the genus Leishmania. Current chemotherapies are severely limited, and the need for new antileishmanials is of pressing international importance. Bromodomains are epigenetic reader domains that have shown promising therapeutic potential for cancer therapy and may also present an attractive target to treat parasitic diseases. Here, we investigate Leishmania donovani bromodomain factor 5 (LdBDF5) as a target for antileishmanial drug discovery. LdBDF5 contains a pair of bromodomains (BD5.1 and BD5.2) in an N-terminal tandem repeat. We purified recombinant bromodomains of L. donovani BDF5 and determined the structure of BD5.2 by X-ray crystallography. Using a histone peptide microarray and fluorescence polarization assay, we identified binding interactions of LdBDF5 bromodomains with acetylated peptides derived from histones H2B and H4. In orthogonal biophysical assays including thermal shift assays, fluorescence polarization, and NMR, we showed that BDF5 bromodomains bind to human bromodomain inhibitors SGC-CBP30, bromosporine, and I-BRD9; moreover, SGC-CBP30 exhibited activity against Leishmania promastigotes in cell viability assays. These findings exemplify the potential BDF5 holds as a possible drug target in Leishmania and provide a foundation for the future development of optimized antileishmanial compounds targeting this epigenetic reader protein.
Collapse
Affiliation(s)
- Catherine
N. Russell
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Jennifer L. Carter
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Juliet M. Borgia
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Jacob Bush
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | | | | | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jeremy C. Mottram
- York
Biomedical Research Institute, Department of Biology, University of York, York YO10 5NG, U.K.
| | - Anthony J. Wilkinson
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Nathaniel G. Jones
- York
Biomedical Research Institute, Department of Biology, University of York, York YO10 5NG, U.K.
| |
Collapse
|
5
|
Rehkopf L, Seidel J, Sindlinger J, Wang M, Kirchgäßner S, Schwarzer D. Synthesis of Nε-acetyl-L-homolysine by the Lossen rearrangement and its application for probing deacetylases and binding modules of acetyl-lysine. J Pept Sci 2023; 29:e3462. [PMID: 36416071 DOI: 10.1002/psc.3462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Lysine acetylation is a posttranslational protein modification mediating protein-protein interactions by recruitment of bromodomains. Investigations of bromodomains have focused so far on the sequence context of the modification site and acyl-modifications installed at lysine side chains. In contrast, there is only little information about the impact of the lysine residue that carries the modification on bromodomain binding. Here, we report a synthesis strategy for L-acetyl-homolysine from L-2-aminosuberic acid by the Lossen rearrangement. Peptide probes containing acetylated homolysine, lysine, and ornithine were generated and used for probing the binding preferences of four bromodomains from three different families. Tested bromodomains showed distinct binding patterns, and one of them bound acetylated homolysine with similar efficiency as the native substrate containing acetyl-lysine. Deacetylation assays with a bacterial sirtuin showed a strong preference for acetylated lysine, despite a broad specificity for N-acyl modifications.
Collapse
Affiliation(s)
- Luisa Rehkopf
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Julian Seidel
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany.,Institute for Organic and Macromolecular Chemistry, Universität Jena, Jena, Germany
| | - Julia Sindlinger
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany.,Institute for Inorganic and Analytical Chemistry, Mass Spectrometry Platform, Universität Jena, Jena, Germany
| | - Mary Wang
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Sören Kirchgäßner
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Dirk Schwarzer
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Kirchgäßner S, Braun MB, Bartlick N, Koç C, Reinkemeier CD, Lemke EA, Stehle T, Schwarzer D. Synthesis, Biochemical Characterization, and Genetic Encoding of a 1,2,4-Triazole Amino Acid as an Acetyllysine Mimic for Bromodomains of the BET Family. Angew Chem Int Ed Engl 2023; 62:e202215460. [PMID: 36585954 DOI: 10.1002/anie.202215460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Lysine acetylation is a charge-neutralizing post-translational modification of proteins bound by bromodomains (Brds). A 1,2,4-triazole amino acid (ApmTri) was established as acetyllysine (Kac) mimic recruiting Brds of the BET family in contrast to glutamine commonly used for simulating this modification. Optimization of triazole substituents and side chain spacing allowed BET Brd recruitment to ApmTri-containing peptides with affinities similar to native substrates. Crystal structures of ApmTri-containing peptides in complex with two BET Brds revealed the binding mode which mirrored that of Kac ligands. ApmTri was genetically encoded and recombinant ApmTri-containing proteins co-enriched BRD3(2) from cellular lysates. This interaction was blocked by BET inhibitor JQ1. With genetically encoded ApmTri, biochemistry is now provided with a stable Kac mimic reflecting charge neutralization and Brd recruitment, allowing new investigations into BET proteins in vitro and in vivo.
Collapse
Affiliation(s)
- Sören Kirchgäßner
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Michael B Braun
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Natascha Bartlick
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Cengiz Koç
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany.,Current address: Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, The Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
| | - Christopher D Reinkemeier
- Biocenter, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.,Institute of Molecular Biology Mainz, 55128, Mainz, Germany.,Current address: Department of Biosystems Science and Engineering Basel, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.,Institute of Molecular Biology Mainz, 55128, Mainz, Germany
| | - Thilo Stehle
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Dirk Schwarzer
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| |
Collapse
|
7
|
Chen LY, Wang WW, Wozniak JM, Parker CG. A heterobifunctional molecule system for targeted protein acetylation in cells. Methods Enzymol 2023; 681:287-323. [PMID: 36764762 DOI: 10.1016/bs.mie.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Protein acetylation is a vital biological process that regulates myriad cellular events. Despite its profound effects on protein function, there are limited research tools to dynamically and selectively regulate protein acetylation. To address this, we developed an acetylation tagging system, called AceTAG, to target proteins for chemically induced acetylation directly in live cells. AceTAG uses heterobifunctional molecules composed of a ligand for the lysine acetyltransferase p300/CBP and a FKBP12F36V ligand. Target proteins are genetically tagged with FKBP12F36V and brought in proximity with p300/CBP by AceTAG molecules to subsequently undergo protein-specific acetylation. Targeted acetylation of proteins in cells using AceTAG is selective, rapid, and can be modulated in a dose-dependent fashion, enabling controlled investigations of acetylated protein targets directly in cells. In this protocol, we focus on (1) generation of AceTAG constructs and cell lines, (2) in vitro characterization of AceTAG mediated ternary complex formation and cellular target engagement studies; and (3) in situ characterization of AceTAG induced acetylation of targeted proteins by immunoblotting and quantitative proteomics. The robust procedures described herein should enable the use of AceTAG to explore the roles of acetylation for a variety of protein targets.
Collapse
Affiliation(s)
- Li-Yun Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Wesley Wei Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
8
|
Yang Z, Wang X, Feng J, Zhu S. Biological Functions of Hydrogen Sulfide in Plants. Int J Mol Sci 2022; 23:ijms232315107. [PMID: 36499443 PMCID: PMC9736554 DOI: 10.3390/ijms232315107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrogen sulfide (H2S), which is a gasotransmitter, can be biosynthesized and participates in various physiological and biochemical processes in plants. H2S also positively affects plants' adaptation to abiotic stresses. Here, we summarize the specific ways in which H2S is endogenously synthesized and metabolized in plants, along with the agents and methods used for H2S research, and outline the progress of research on the regulation of H2S on plant metabolism and morphogenesis, abiotic stress tolerance, and the series of different post-translational modifications (PTMs) in which H2S is involved, to provide a reference for future research on the mechanism of H2S action.
Collapse
Affiliation(s)
- Zhifeng Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
9
|
Lu D, Wang C, Qu L, Yin F, Li S, Luo H, Zhang Y, Liu X, Chen X, Luo Z, Cui N, Kong L, Wang X. Histone Deacetylase and Enhancer of Zeste Homologue 2 Dual Inhibitors Presenting a Synergistic Effect for the Treatment of Hematological Malignancies. J Med Chem 2022; 65:12838-12859. [DOI: 10.1021/acs.jmedchem.2c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dehua Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xingchen Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongwen Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ningjie Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Development of hetero-triaryls as a new chemotype for subtype-selective and potent Sirt5 inhibition. Eur J Med Chem 2022; 240:114594. [PMID: 35853430 DOI: 10.1016/j.ejmech.2022.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
In contrast to other sirtuins (NAD+-dependent class III lysine deacylases), inhibition of Sirt5 is poorly investigated, yet. Our present work is based on the recently identified Sirt5 inhibitor balsalazide, an approved drug with negligible bioavailability after oral administration. After gaining first insights into its structure-activity relationship in previous work, we were able to now develop heteroaryl-triaryls as a novel chemotype of drug-like, potent and subtype-selective Sirt5 inhibitors. The unfavourable azo group of the lead structure was modified in a systematic and comprehensive manner, leading us to a few open-chained and, most importantly, five-membered heteroaromatic substitutes (isoxazole CG_209, triazole CG_220, pyrazole CG_232) with very encouraging in vitro activities (IC50 on Sirt5 in the low micromolar range, <10 μM). These advanced inhibitors were free of cytotoxicity and showed favourable pharmacokinetic properties, as confirmed by permeability into mitochondria using live cell imaging experiments. Furthermore, results from calculations of the relative free binding affinities of the analogues compared to balsalazide as reference compound agreed well with the trends for inhibitory activities obtained in the in vitro experiments. Therefore, this method can be used to predict the affinity of closely related future potential Sirt5 inhibitors. Encouraged by our findings, we employed chemoproteomic selectivity profiling to confirm Sirt5 as main target of balsalazide and one of its improved analogues. An immobilised balsalazide-analogue specifically pulled down Sirt5 from whole cell lysates and competition experiments identified glutaryl-CoA dehydrogenase (GCDH) and nucleotide diphosphate kinase (NME4) as potential off-targets, once again confirming the selectivity of the novel balsalazide-derived Sirt5 inhibitors. In summary, a combination of targeted chemical synthesis, biological work, and computational studies led to a new generation of tailored Sirt5 inhibitors, which represent valuable chemical tools for the investigation of the physiological role of Sirt5, but could also serve as advanced lead structures for drug candidates for systemic use.
Collapse
|
11
|
Role of Epigenetics in Modulating Phenotypic Plasticity against Abiotic Stresses in Plants. Int J Genomics 2022; 2022:1092894. [PMID: 35747076 PMCID: PMC9213152 DOI: 10.1155/2022/1092894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Plants being sessile are always exposed to various environmental stresses, and to overcome these stresses, modifications at the epigenetic level can prove vital for their long-term survival. Epigenomics refers to the large-scale study of epigenetic marks on the genome, which include covalent modifications of histone tails (acetylation, methylation, phosphorylation, ubiquitination, and the small RNA machinery). Studies based on epigenetics have evolved over the years especially in understanding the mechanisms at transcriptional and posttranscriptional levels in plants against various environmental stimuli. Epigenomic changes in plants through induced methylation of specific genes that lead to changes in their expression can help to overcome various stress conditions. Recent studies suggested that epigenomics has a significant potential for crop improvement in plants. By the induction and modulation of various cellular processes like DNA methylation, histone modification, and biogenesis of noncoding RNAs, the plant genome can be activated which can help in achieving a quicker response against various plant stresses. Epigenetic modifications in plants allow them to adjust under varied environmental stresses by modulating their phenotypic plasticity and at the same time ensure the quality and yield of crops. The plasticity of the epigenome helps to adapt the plants during pre- and postdevelopmental processes. The variation in DNA methylation in different organisms exhibits variable phenotypic responses. The epigenetic changes also occur sequentially in the genome. Various studies indicated that environmentally stimulated epimutations produce variable responses especially in differentially methylated regions (DMR) that play a major role in the management of stress conditions in plants. Besides, it has been observed that environmental stresses cause specific changes in the epigenome that are closely associated with phenotypic modifications. However, the relationship between epigenetic modifications and phenotypic plasticity is still debatable. In this review, we will be discussing the role of various factors that allow epigenetic changes to modulate phenotypic plasticity against various abiotic stress in plants.
Collapse
|
12
|
Xie Y, Du S, Liu Z, Liu M, Xu Z, Wang X, Kee JX, Yi F, Sun H, Yao SQ. Chemical Biology Tools for Protein Lysine Acylation. Angew Chem Int Ed Engl 2022; 61:e202200303. [PMID: 35302274 DOI: 10.1002/anie.202200303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Lysine acylation plays pivotal roles in cell physiology, including DNA transcription and repair, signal transduction, immune defense, metabolism, and many other key cellular processes. Molecular mechanisms of dysregulated lysine acylation are closely involved in the pathophysiological progress of many human diseases, most notably cancers. In recent years, chemical biology tools have become instrumental in studying the function of post-translational modifications (PTMs), identifying new "writers", "erasers" and "readers", and in targeted therapies. Here, we describe key developments in chemical biology approaches that have advanced the study of lysine acylation and its regulatory proteins (2016-2021). We further discuss the discovery of ligands (inhibitors and PROTACs) that are capable of targeting regulators of lysine acylation. Next, we discuss some current challenges of these chemical biology probes and suggest how chemists and biologists can utilize chemical probes with more discriminating capacity. Finally, we suggest some critical considerations in future studies of PTMs from our perspective.
Collapse
Affiliation(s)
- Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Zhiyang Liu
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zhiqiang Xu
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hongyan Sun
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
13
|
Dietschreit JCB, von der Esch B, Ochsenfeld C. Exponential averaging versus umbrella sampling for computing the QM/MM free energy barrier of the initial step of the desuccinylation reaction catalyzed by sirtuin 5. Phys Chem Chem Phys 2022; 24:7723-7731. [PMID: 35292791 DOI: 10.1039/d1cp05007a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The computational characterization of enzymatic reactions poses a great challenge which arises from the high dimensional and often rough potential energy surfaces commonly explored by static QM/MM methods such as adiabatic mapping (AM). The present study highlights the difficulties in estimating free energy barriers via exponential averaging over AM pathways. Based on our previous study [von der Esch et al., J. Chem. Theory Comput., 2019, 15, 6660-6667], where we analyzed the first reaction step of the desuccinylation reaction catalyzed by human sirtuin 5 (SIRT5) by means of QM/MM adiabatic mapping and machine learning, we use, here, umbrella sampling to compute the free energy profile of the initial reaction step. The computational investigations show that the initial step of the desuccinylation reaction proceeds via an SN2-type reaction mechanism in SIRT5, suggesting that the first step of the deacylation reactions catalyzed by sirtuins is highly conserved. In addition, the direct comparison of the extrapolated free energy barrier from minimal energy paths and the computed free energy path from umbrella sampling further underlines the importance of extensive sampling.
Collapse
Affiliation(s)
- Johannes C B Dietschreit
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Beatriz von der Esch
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany.,Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany.
| |
Collapse
|
14
|
Xie Y, Du S, Liu Z, Liu M, Xu Z, Wang X, Kee JX, Yi F, Sun H, Yao SQ. Chemical Biology Tools for Protein Lysine Acylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yusheng Xie
- Shandong University School of Basic Medical Science 250012 Jinan CHINA
| | - Shubo Du
- National University of Singapore Department of Chemistry SINGAPORE
| | - Zhiyang Liu
- City University of Hong Kong chemistry HONG KONG
| | - Min Liu
- Shandong University School of Basic Medical Sciences CHINA
| | - Zhiqiang Xu
- City University of Hong Kong Department of Chemistry HONG KONG
| | - Xiaojie Wang
- Shandong University School of Basic Medical Sciences CHINA
| | - Jia Xuan Kee
- National University of Singapore Chemistry SINGAPORE
| | - Fan Yi
- Shandong University School of basic medical sciences CHINA
| | - Hongyan Sun
- City University of Hong Kong department of chemistry HONG KONG
| | - Shao Q. Yao
- National University of Singapore Department of Chemistry 3 Science Dr. 117543 Singapore SINGAPORE
| |
Collapse
|
15
|
Marek M, Ramos-Morales E, Picchi-Constante GFA, Bayer T, Norström C, Herp D, Sales-Junior PA, Guerra-Slompo EP, Hausmann K, Chakrabarti A, Shaik TB, Merz A, Troesch E, Schmidtkunz K, Goldenberg S, Pierce RJ, Mourão MM, Jung M, Schultz J, Sippl W, Zanchin NIT, Romier C. Species-selective targeting of pathogens revealed by the atypical structure and active site of Trypanosoma cruzi histone deacetylase DAC2. Cell Rep 2021; 37:110129. [PMID: 34936867 DOI: 10.1016/j.celrep.2021.110129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Writing and erasing of posttranslational modifications are crucial to phenotypic plasticity and antigenic variation of eukaryotic pathogens. Targeting pathogens' modification machineries, thus, represents a valid approach to fighting parasitic diseases. However, identification of parasitic targets and the development of selective anti-parasitic drugs still represent major bottlenecks. Here, we show that the zinc-dependent histone deacetylases (HDACs) of the protozoan parasite Trypanosoma cruzi are key regulators that have significantly diverged from their human counterparts. Depletion of T. cruzi class I HDACs tcDAC1 and tcDAC2 compromises cell-cycle progression and division, leading to cell death. Notably, tcDAC2 displays a deacetylase activity essential to the parasite and shows major structural differences with human HDACs. Specifically, tcDAC2 harbors a modular active site with a unique subpocket targeted by inhibitors showing substantial anti-parasitic effects in cellulo and in vivo. Thus, the targeting of the many atypical HDACs in pathogens can enable anti-parasitic selective chemical impairment.
Collapse
Affiliation(s)
- Martin Marek
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Elizabeth Ramos-Morales
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | | | - Theresa Bayer
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | | | - Daniel Herp
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Policarpo A Sales-Junior
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | | | - Kristin Hausmann
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | - Alokta Chakrabarti
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Tajith B Shaik
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Annika Merz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Edouard Troesch
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Samuel Goldenberg
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná 81350-010, Brazil
| | - Raymond J Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL -Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Marina M Mourão
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, SE-17165 Solna, Sweden
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | - Nilson I T Zanchin
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná 81350-010, Brazil.
| | - Christophe Romier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France.
| |
Collapse
|
16
|
Troelsen KS, Calder EDD, Skwarska A, Sneddon D, Hammond EM, Conway SJ. Zap-Pano: a Photocaged Prodrug of the KDAC Inhibitor Panobinostat. ChemMedChem 2021; 16:3691-3700. [PMID: 34259396 PMCID: PMC9291796 DOI: 10.1002/cmdc.202100403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Indexed: 01/04/2023]
Abstract
We report the synthesis and biological evaluation of a light-activated (caged) prodrug of the KDAC inhibitor panobinostat (Zap-Pano). We demonstrate that addition of the 4,5-dimethoxy-2-nitrobenzyl group to the hydroxamic acid oxygen results in an inactive prodrug. In two cancer cell lines we show that photolysis of this compound releases panobinostat and an unexpected carboxamide analogue of panobinostat. Photolysis of Zap-Pano causes an increase in H3K9Ac and H3K18Ac, consistent with KDAC inhibition, in an oesophageal cancer cell line (OE21). Irradiation of OE21 cells in the presence of Zap-Pano results in apoptotic cell death. This compound is a useful research tool, allowing spatial and temporal control over release of panobinostat.
Collapse
Affiliation(s)
- Kathrin S. Troelsen
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
- Department of OncologyOxford Institute for Radiation OncologyUniversity of OxfordOxfordOX3 7DQUK
- Department of Drug Design and PharmacologyUniversity of CopenhagenJagtvej 1622100CopenhagenDenmark
| | - Ewen D. D. Calder
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Anna Skwarska
- Department of OncologyOxford Institute for Radiation OncologyUniversity of OxfordOxfordOX3 7DQUK
| | - Deborah Sneddon
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Ester M. Hammond
- Department of OncologyOxford Institute for Radiation OncologyUniversity of OxfordOxfordOX3 7DQUK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
17
|
Wang WW, Chen LY, Wozniak JM, Jadhav AM, Anderson H, Malone TE, Parker CG. Targeted Protein Acetylation in Cells Using Heterobifunctional Molecules. J Am Chem Soc 2021; 143:16700-16708. [PMID: 34592107 PMCID: PMC10793965 DOI: 10.1021/jacs.1c07850] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein acetylation is a central event in orchestrating diverse cellular processes. However, current strategies to investigate protein acetylation in cells are often nonspecific or lack temporal and magnitude control. Here, we developed an acetylation tagging system, AceTAG, to induce acetylation of targeted proteins. The AceTAG system utilizes bifunctional molecules to direct the lysine acetyltransferase p300/CBP to proteins fused with the small protein tag FKBP12F36V, resulting in their induced acetylation. Using AceTAG, we induced targeted acetylation of a diverse array of proteins in cells, specifically histone H3.3, the NF-κB subunit p65/RelA, and the tumor suppressor p53. We demonstrate that targeted acetylation with the AceTAG system is rapid, selective, reversible and can be controlled in a dose-dependent fashion. AceTAG represents a useful strategy to modulate protein acetylation and should enable the exploration of targeted acetylation in basic biological and therapeutic contexts.
Collapse
Affiliation(s)
- Wesley W Wang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Li-Yun Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Appaso M Jadhav
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Hayden Anderson
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Taylor E Malone
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Márquez-Cantudo L, Ramos A, Coderch C, de Pascual-Teresa B. Proteasomal Degradation of Zn-Dependent Hdacs: The E3-Ligases Implicated and the Designed Protacs That Enable Degradation. Molecules 2021; 26:molecules26185606. [PMID: 34577077 PMCID: PMC8467390 DOI: 10.3390/molecules26185606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Protein degradation by the Ubiquitin-Proteasome System is one of the main mechanisms of the regulation of cellular proteostasis, and the E3 ligases are the key effectors for the protein recognition and degradation. Many E3 ligases have key roles in cell cycle regulation, acting as checkpoints and checkpoint regulators. One of the many important proteins involved in the regulation of the cell cycle are the members of the Histone Deacetylase (HDAC) family. The importance of zinc dependent HDACs in the regulation of chromatin packing and, therefore, gene expression, has made them targets for the design and synthesis of HDAC inhibitors. However, achieving potency and selectivity has proven to be a challenge due to the homology between the zinc dependent HDACs. PROteolysis TArgeting Chimaera (PROTAC) design has been demonstrated to be a useful strategy to inhibit and selectively degrade protein targets. In this review, we attempt to summarize the E3 ligases that naturally ubiquitinate HDACs, analyze their structure, and list the known ligands that can bind to these E3 ligases and be used for PROTAC design, as well as the already described HDAC-targeted PROTACs.
Collapse
|
19
|
Brand M, Clayton J, Moroglu M, Schiedel M, Picaud S, Bluck JP, Skwarska A, Bolland H, Chan AKN, Laurin CMC, Scorah AR, See L, Rooney TPC, Andrews KH, Fedorov O, Perell G, Kalra P, Vinh KB, Cortopassi WA, Heitel P, Christensen KE, Cooper RI, Paton RS, Pomerantz WCK, Biggin PC, Hammond EM, Filippakopoulos P, Conway SJ. Controlling Intramolecular Interactions in the Design of Selective, High-Affinity Ligands for the CREBBP Bromodomain. J Med Chem 2021; 64:10102-10123. [PMID: 34255515 PMCID: PMC8311651 DOI: 10.1021/acs.jmedchem.1c00348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
CREBBP (CBP/KAT3A)
and its paralogue EP300 (KAT3B) are lysine acetyltransferases
(KATs) that are essential for human development. They each comprise
10 domains through which they interact with >400 proteins, making
them important transcriptional co-activators and key nodes in the
human protein–protein interactome. The bromodomains of CREBBP
and EP300 enable the binding of acetylated lysine residues from histones
and a number of other important proteins, including p53, p73, E2F,
and GATA1. Here, we report a work to develop a high-affinity, small-molecule
ligand for the CREBBP and EP300 bromodomains [(−)-OXFBD05]
that shows >100-fold selectivity over a representative member of
the
BET bromodomains, BRD4(1). Cellular studies using this ligand demonstrate
that the inhibition of the CREBBP/EP300 bromodomain in HCT116 colon
cancer cells results in lowered levels of c-Myc and a reduction in
H3K18 and H3K27 acetylation. In hypoxia (<0.1% O2),
the inhibition of the CREBBP/EP300 bromodomain results in the enhanced
stabilization of HIF-1α.
Collapse
Affiliation(s)
- Michael Brand
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - James Clayton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Matthias Schiedel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Sarah Picaud
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Joseph P Bluck
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Anna Skwarska
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Hannah Bolland
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Anthony K N Chan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Corentine M C Laurin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Amy R Scorah
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Larissa See
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Timothy P C Rooney
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Katrina H Andrews
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Gabriella Perell
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kayla B Vinh
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Wilian A Cortopassi
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Pascal Heitel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Richard I Cooper
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Robert S Paton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,Department of Chemistry, Colorado State University, 1301 Center Ave, Ft. Collins, Colorado 80523-1872, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Panagis Filippakopoulos
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
20
|
Favalli N, Bassi G, Pellegrino C, Millul J, De Luca R, Cazzamalli S, Yang S, Trenner A, Mozaffari NL, Myburgh R, Moroglu M, Conway SJ, Sartori AA, Manz MG, Lerner RA, Vogt PK, Scheuermann J, Neri D. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat Chem 2021; 13:540-548. [PMID: 33833446 PMCID: PMC8405038 DOI: 10.1038/s41557-021-00660-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.
Collapse
Affiliation(s)
- Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | | | | | | | - Su Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA
| | - Peter K Vogt
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
21
|
Identification of the subtype-selective Sirt5 inhibitor balsalazide through systematic SAR analysis and rationalization via theoretical investigations. Eur J Med Chem 2020; 206:112676. [PMID: 32858418 DOI: 10.1016/j.ejmech.2020.112676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022]
Abstract
We report here an extensive structure-activity relationship study of balsalazide, which was previously identified in a high-throughput screening as an inhibitor of Sirt5. To get a closer understanding why this compound is able to inhibit Sirt5, we initially performed docking experiments comparing the binding mode of a succinylated peptide as the natural substrate and balsalazide with Sirt5 in the presence of NAD+. Based on the evidence gathered here, we designed and synthesized 13 analogues of balsalazide, in which single functional groups were either deleted or slightly altered to investigate which of them are mandatory for high inhibitory activity. Our study confirms that balsalazide with all its given functional groups is an inhibitor of Sirt5 in the low micromolar concentration range and structural modifications presented in this study did not increase potency. While changes on the N-aroyl-β-alanine side chain eliminated potency, the introduction of a truncated salicylic acid part minimally altered potency. Calculations of the associated reaction paths showed that the inhibition potency is very likely dominated by the stability of the inhibitor-enzyme complex and not the type of inhibition (covalent vs. non-covalent). Further in-vitro characterization in a trypsin coupled assay determined that the tested inhibitors showed no competition towards NAD+ or the synthetic substrate analogue ZKsA. In addition, investigations for subtype selectivity revealed that balsalazide is a subtype-selective Sirt5 inhibitor, and our initial SAR and docking studies pave the way for further optimization.
Collapse
|
22
|
Bassi G, Favalli N, Vuk M, Catalano M, Martinelli A, Trenner A, Porro A, Yang S, Tham CL, Moroglu M, Yue WW, Conway SJ, Vogt PK, Sartori AA, Scheuermann J, Neri D. A Single-Stranded DNA-Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand Discovery by Modular Assembly of Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001970. [PMID: 33240760 PMCID: PMC7675038 DOI: 10.1002/advs.202001970] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Indexed: 06/11/2023]
Abstract
A versatile and Lipinski-compliant DNA-encoded library (DEL), comprising 366 600 glutamic acid derivatives coupled to oligonucleotides serving as amplifiable identification barcodes is designed, constructed, and characterized. The GB-DEL library, constructed in single-stranded DNA format, allows de novo identification of specific binders against several pharmaceutically relevant proteins. Moreover, hybridization of the single-stranded DEL with a set of known protein ligands of low to medium affinity coupled to a complementary DNA strand results in self-assembled selectable chemical structures, leading to the identification of affinity-matured compounds.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Miriam Vuk
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Anika Trenner
- Institute of Molecular Cancer ResearchUniversity of ZürichZürich8006Switzerland
| | - Antonio Porro
- Institute of Molecular Cancer ResearchUniversity of ZürichZürich8006Switzerland
| | - Su Yang
- Scripps Research InstituteDepartment of Molecular MedicineLa JollaCA92037USA
| | - Chuin Lean Tham
- Structural Genomic Consortium (SGC)Nuffield Department of MedicineUniversity of OxfordOxfordOX1 2JDUK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Wyatt W. Yue
- Structural Genomic Consortium (SGC)Nuffield Department of MedicineUniversity of OxfordOxfordOX1 2JDUK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Peter K. Vogt
- Scripps Research InstituteDepartment of Molecular MedicineLa JollaCA92037USA
| | | | - Jörg Scheuermann
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Dario Neri
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| |
Collapse
|
23
|
Smalley JP, Cowley SM, Hodgkinson JT. Bifunctional HDAC Therapeutics: One Drug to Rule Them All? Molecules 2020; 25:E4394. [PMID: 32987782 PMCID: PMC7583022 DOI: 10.3390/molecules25194394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase (HDAC) enzymes play crucial roles in epigenetic gene expression and are an attractive therapeutic target. Five HDAC inhibitors have been approved for cancer treatment to date, however, clinical applications have been limited due to poor single-agent drug efficacy and side effects associated with a lack of HDAC isoform or complex selectivity. An emerging strategy aiming to address these limitations is the development of bifunctional HDAC therapeutics-single molecules comprising a HDAC inhibitor conjugated to another specificity targeting moiety. This review summarises the recent advancements in novel types of dual-targeting HDAC modulators, including proteolysis-targeting chimeras (PROTACs), with a focus on HDAC isoform and complex selectivity, and the future potential of such bifunctional molecules in achieving enhanced drug efficacy and therapeutic benefits in treating disease.
Collapse
Affiliation(s)
- Joshua P. Smalley
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| | - Shaun M. Cowley
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK;
| | - James T. Hodgkinson
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
24
|
Selective inhibition of CBP/p300 HAT by A-485 results in suppression of lipogenesis and hepatic gluconeogenesis. Cell Death Dis 2020; 11:745. [PMID: 32917859 PMCID: PMC7486386 DOI: 10.1038/s41419-020-02960-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The histone acetyltransferases CREB-binding protein (CBP) and its paralogue p300 are transcriptional coactivators which are essential for a multitude of signaling pathways and energy homeostasis. However, the role of CBP/p300 HAT domain in regulating energy balance is still unclear. Here, C57BL/6 mice fed with either normal chow diet (NCD) or high-fat diet (HFD) were administrated with A-485, a recently reported selective inhibitor of CBP/p300 HAT activity for 1 week and the metabolic change was analyzed. The white adipose tissue (WAT) weight and adipocyte size were reduced in A-485-administrated mice, with decreased expressions of lipogenic genes and transcriptional factors. In the liver of A-485-treated mice, the lipid content and lipogenic gene expressions were lowered while the binding of forkhead box O1 (FOXO1) to glucose-6-phosphatase (G6Pc) promoter was reduced, leading to decreased expression of G6Pc. In primary mouse hepatocytes, A-485 abolished cAMP-elicited mRNA expressions of key gluconeogenic enzymes and promoted FOXO1 protein degradation via increasing its ubiquitination. Thus, A-485 inhibits lipogenesis in WAT and liver as well as decreases hepatic glucose production via preventing FOXO1 acetylation, leading to its protein degradation through a proteasome-dependent pathway. The specific inhibition of CBP/p300 HAT will provide a novel therapeutic approach for metabolic diseases.
Collapse
|
25
|
Calder ED, Skwarska A, Sneddon D, Folkes LK, Mistry IN, Conway SJ, Hammond EM. Hypoxia-activated pro-drugs of the KDAC inhibitor vorinostat (SAHA). Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Plasma Metabolic Signature of Atherosclerosis Progression and Colchicine Treatment in Rabbits. Sci Rep 2020; 10:7072. [PMID: 32341369 PMCID: PMC7184732 DOI: 10.1038/s41598-020-63306-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Balloon catheter endothelial denudation in New Zealand white rabbits fed high cholesterol diet is a validated atherosclerosis model. Well-characterized in terms of atherosclerosis induction and progression, the metabolic changes associated with the atherosclerosis progression remain indeterminate. Non-targeted metabolomics permits to develop such elucidation and allows to evaluate the metabolic consequences of colchicine treatment, an anti-inflammatory drug that could revert these changes. 16 rabbits underwent 18 weeks of atherosclerosis induction by diet and aortic denudation. Thereafter animals were randomly assigned to colchicine treatment or placebo for 18 weeks while on diet. Plasma samples were obtained before randomization and at 36 weeks. Multiplatform (GC/MS, CE/MS, RP-HPLC/MS) metabolomics was applied. Plasma fingerprints were pre-processed, and the resulting matrixes analyzed to unveil differentially expressed features. Different chemical annotation strategies were accomplished for those significant features. We found metabolites associated with either atherosclerosis progression, or colchicine treatment, or both. Atherosclerosis was profoundly associated with an increase in circulating bile acids. Most of the changes associated with sterol metabolism could not be reverted by colchicine treatment. However, the variations in lysine, tryptophan and cysteine metabolism among others, have shown new potential mechanisms of action of the drug, also related to atherosclerosis progression, but not previously described.
Collapse
|
27
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation. Angew Chem Int Ed Engl 2019; 58:17930-17952. [DOI: 10.1002/anie.201812164] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
28
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
29
|
Chan AKN, Chen CW. Rewiring the Epigenetic Networks in MLL-Rearranged Leukemias: Epigenetic Dysregulation and Pharmacological Interventions. Front Cell Dev Biol 2019; 7:81. [PMID: 31157223 PMCID: PMC6529847 DOI: 10.3389/fcell.2019.00081] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
Leukemias driven by chromosomal translocation of the mixed-lineage leukemia gene (MLL or KMT2A) are highly prevalent in pediatric oncology. The poor survival rate and lack of an effective targeted therapy for patients with MLL-rearranged (MLL-r) leukemias emphasize an urgent need for improved knowledge and novel therapeutic approaches for these malignancies. The resulting chimeric products of MLL gene rearrangements, i.e., MLL-fusion proteins (MLL-FPs), are capable of transforming hematopoietic stem/progenitor cells (HSPCs) into leukemic blasts. The ability of MLL-FPs to reprogram HSPCs toward leukemia requires the involvement of multiple chromatin effectors, including the histone 3 lysine 79 methyltransferase DOT1L, the chromatin epigenetic reader BRD4, and the super elongation complex. These epigenetic regulators constitute a complicated network that dictates maintenance of the leukemia program, and therefore represent an important cluster of therapeutic opportunities. In this review, we will discuss the role of MLL and its fusion partners in normal HSPCs and hematopoiesis, including the links between chromatin effectors, epigenetic landscapes, and leukemia development, and summarize current approaches to therapeutic targeting of MLL-r leukemias.
Collapse
Affiliation(s)
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
30
|
Ageeva-Kieferle A, Rudolf EE, Lindermayr C. Redox-Dependent Chromatin Remodeling: A New Function of Nitric Oxide as Architect of Chromatin Structure in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:625. [PMID: 31191565 PMCID: PMC6546728 DOI: 10.3389/fpls.2019.00625] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/26/2019] [Indexed: 05/02/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule in all kingdoms. In plants, NO is involved in the regulation of various processes of growth and development as well as biotic and abiotic stress response. It mainly acts by modifying protein cysteine or tyrosine residues or by interacting with protein bound transition metals. Thereby, the modification of cysteine residues known as protein S-nitrosation is the predominant mechanism for transduction of NO bioactivity. Histone acetylation on N-terminal lysine residues is a very important epigenetic regulatory mechanism. The transfer of acetyl groups from acetyl-coenzyme A on histone lysine residues is catalyzed by histone acetyltransferases. This modification neutralizes the positive charge of the lysine residue and results in a loose structure of the chromatin accessible for the transcriptional machinery. Histone deacetylases, in contrast, remove the acetyl group of histone tails resulting in condensed chromatin with reduced gene expression activity. In plants, the histone acetylation level is regulated by S-nitrosation. NO inhibits HDA complexes resulting in enhanced histone acetylation and promoting a supportive chromatin state for expression of genes. Moreover, methylation of histone tails and DNA are important epigenetic modifications, too. Interestingly, methyltransferases and demethylases are described as targets for redox molecules in several biological systems suggesting that these types of chromatin modifications are also regulated by NO. In this review article, we will focus on redox-regulation of histone acetylation/methylation and DNA methylation in plants, discuss the consequences on the structural level and give an overview where NO can act to modulate chromatin structure.
Collapse
|
31
|
BET bromodomain inhibitors: fragment-based in silico design using multi-target QSAR models. Mol Divers 2018; 23:555-572. [PMID: 30421269 DOI: 10.1007/s11030-018-9890-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Epigenetics has become a focus of interest in drug discovery. In this sense, bromodomain-containing proteins have emerged as potential epigenetic targets in cancer research and other therapeutic areas. Several computational approaches have been applied to the prediction of bromodomain inhibitors. Nevertheless, such approaches have several drawbacks such as the fact that they predict activity against only one bromodomain-containing protein, using structurally related compounds. Also, there are no reports focused on meaningfully analyzing the physicochemical/structural features that are necessary for the design of a bromodomain inhibitor. This work describes the development of two different multi-target models based on quantitative structure-activity relationships (mt-QSAR) for the prediction and in silico design of multi-target bromodomain inhibitors against the proteins BRD2, BRD3, and BRD4. The first model relied on linear discriminant analysis (LDA) while the second focused on artificial neural networks. Both models exhibited accuracies higher than 85% in the dataset. Several molecular fragments were extracted, and their contributions to the inhibitory activity against the three BET proteins were calculated by the LDA model. Six molecules were designed by assembling the fragments with positive contributions, and they were predicted as multi-target BET bromodomain inhibitors by the two mt-QSAR models. Molecular docking calculations converged with the predictions performed by the mt-QSAR models, suggesting that the designed molecules can exhibit potent activity against the three BET proteins. These molecules complied with the Lipinski's rule of five.
Collapse
|