1
|
Black N, Banks TM, Glendinning S, Chowdhury G, Mykles DL, Ventura T. Silencing Multiple Crustacean Hyperglycaemic Hormone-Encoding Genes in the Redclaw Crayfish Cherax quadricarinatus Induces Faster Molt Rates with Anomalies. Int J Mol Sci 2024; 25:12314. [PMID: 39596377 PMCID: PMC11594818 DOI: 10.3390/ijms252212314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
RNA interference (RNAi)-based biotechnology has been previously implemented in decapod crustaceans. Unlike traditional RNAi methodologies that investigate single gene silencing, we employed a multigene silencing approach in decapods based on chimeric double-stranded RNA (dsRNA) molecules coined 'gene blocks'. Two dsRNA constructs, each targeting three genes of the crustacean hyperglycaemic hormone (CHH) superfamily of neuropeptides, were produced: Type II construct targeting Cq-Molt-inhibiting hormone 1 (MIH1), Cq-MIH-like 1 (MIHL1), and Cq-MIHL2 isoforms and Type I construct targeting Cq-ion transport peptide (Cq-ITP; a putative hybrid of CHH and MIH) and Cq-CHH and Cq-CHH-like (CHHL) isoforms. Both constructs were injected into juvenile redclaw crayfish, Cherax quadricarinatus, to determine the effects of multigene knockdown on molting and developmental processes. A 20-Hydroxyecdysone (20E) enzyme-linked immunosorbent assay (ELISA) and glucose assay were used to determine the effects of RNAi on molting and hemolymph glycemic activities, respectively. Multigene silencing reduced the intermolt interval by 23%. Statistically significant elevated 20E was recorded in treated intermolt individuals, consistent with the reduced intermolt interval as well as unique and abnormal phenotypes related to the molting process, which indicates a shift in 20E-induced cascade. There was no effect of RNAi treatment on hemolymph glucose level or molt increment. Through multigene silencing and subsequent annotation of gene networks, gene blocks may provide a tailored approach to investigate complex polygenic traits with RNAi in a more efficient and scalable manner.
Collapse
Affiliation(s)
- Nickolis Black
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Thomas M. Banks
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Susan Glendinning
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Gourab Chowdhury
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
2
|
Wang W, Liu Z, Wang X, Zhang F, Ma C, Zhao M, Ma K, Ma L. Feeding rhythm of the zoea larvae of Scylla paramamosain: The dynamic feeding rhythm is not completely synchronized with photoperiod. Heliyon 2024; 10:e29826. [PMID: 38681660 PMCID: PMC11053271 DOI: 10.1016/j.heliyon.2024.e29826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
The feeding rhythm is one of the key factors determining the success of artificial breeding of S. paramamosain. To understand the feeding rhythm of the different zoea larva developmental stages of S. paramamosain, the feeding rate, digestive enzyme activity, and expression of metabolism-related genes were investigated in the present study. The results showed that the S. paramamosain feeding rate has strong diurnal feeding rhythm, being significantly higher at 10:00-14:00 from stages ZI to ZIV. While the feeding rate peaked at 14:00 on Days 10 and 11, the peak shifted to 18:00 on Day 12. The activity of digestive enzymes amylase, pepsin and lipase decreased at night but increased in the daytime, showing a single-phase rhythm similar to that of the feeding rate, suggesting that the digestive enzyme activity was closely associated with the feeding rate during the larval development. Compared to pepsin and lipase, the activity of amylase was the most consistent with feeding rate. In particular, amylase activity peaked at 18:00 on Day 12. Due to its synchronicity with feeding activity, the activity of amylase could provide a potential reference for determining the best feeding time during zoea stages in S. paramamosain breeding. Moreover, the relative mRNA expression of metabolism-related genes SpCHH and SpFAS at most tested points was lower from 10:00 to 14:00, but higher at 18:00 to 6:00 of the next day. On the other hand, the expression patterns of SpHSL and SpTryp were converse to those of SpCHH and SpFAS. Our findings revealed that the S. paramamosain zoea has an obvious feeding rhythm, and the most suitable feeding time was 10:00-18:00 depending on different stages. The feeding rhythm is a critical aspect in aquaculture, influencing a series of physiological functions in aquatic animals. This study provides insights into the feeding rhythm during the zoea development of S. paramamosain, making a significant contribution to optimizing feeding strategy, improving aquafeed utilization, and reducing the impact of residual feed on water environment.
Collapse
Affiliation(s)
| | | | - Xueyang Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Chunyan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Keyi Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| |
Collapse
|
3
|
Mo N, Shao S, Yang Y, Bao C, Cui Z. Identifying low salinity adaptation gene expression in the anterior and posterior gills of the mud crab (Scylla paramamosain) by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101166. [PMID: 38070330 DOI: 10.1016/j.cbd.2023.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 02/15/2024]
Abstract
In the present study, BGISEQ-500 RNA-Seq technology was adopted to investigate how Scylla paramamosain adapts to salinity tolerance at the molecular level and explores changes in gene expression linked to salinity adaptation following exposure to both low salinity (5 ‰) and standard salinity (23 ‰) conditions. A total of 1100 and 520 differentially expressed genes (DEGs) were identified in the anterior and posterior gills, respectively, and their corresponding expression patterns were visualized in volcano plots and a heatmap. Further analysis highlighted significant enrichment of well-established gene functional categories and signaling pathways, including those what associated with cellular stress response, ion transport, energy metabolism, amino acid metabolism, H2O transport, and physiological stress compensation. We also selected key DEGs within the anterior and posterior gills that encode pivotal stress adaptation and tolerance modulators, including AQP, ABCA1, HSP 10, A35, CAg, NKA, VPA, CAc, and SPS. Interestingly, A35 in the gills might regulate osmolality by binding CHH in response to low salinity stress or serve as a mechanism for energy compensation. Taken together, our findings elucidated the intricate molecular mechanism employed by S. paramamosain for salinity adaptation, which involved distinct gene expression patterns in the anterior and posterior gills. These findings provide the foothold for subsequent investigations into salinity-responsive candidate genes and contribute to a deeper understanding of S. paramamosain's adaptation mechanisms in low-salinity surroundings, which is crucial for the development of low-salinity species cultivation and the establishment of a robust culture model.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| |
Collapse
|
4
|
Mo N, Shao S, Zhuang Y, Yang Y, Cui Z, Bao C. Activation and characterization of G protein-coupled receptors for CHHs in the mud crab, Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111563. [PMID: 38122925 DOI: 10.1016/j.cbpa.2023.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Crustacean hyperglycemic hormone (CHH) superfamily peptides constitute a group of neurohormones, including the crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), which reportedly play an essential role in regulating various biological activities by binding to their receptors in crustaceans. Although bioinformatics analyses have identified G protein-coupled receptors (GPCRs) as potential CHH receptors, no validation through binding experiments has been carried out. This study employed a eukaryotic expression system, HEK293T cell transient transfection, and ligand-receptor interaction tests to identify the GPCRs of CHHs in the mud crab Scylla paramamosain. We found that four GPCRs (Sp-GPCR-A34-A37) were activated by their corresponding CHHs (Sp-CHH1-v1, Sp-MIH, Sp-VIH) in a dose-dependent manner. Of these, Sp-GPCR-A34 was exclusively activated by Sp-VIH; Sp-GPCR-A35 was activated by Sp-CHH1-v1 and Sp-VIH, respectively; Sp-GPCR-A36 was activated by Sp-CHH1-v1 and Sp-MIH; Sp-GPCR-A37 was exclusively activated by Sp-MIH. The half-maximal effective concentration (EC50) values for all CHHs/GPCRs pairs (both Ca2+ and cAMP signaling) were in the nanomolar range. Overall, our study provided hitherto undocumented evidence of the presence of G protein-coupled receptors of CHH in crustaceans, providing the foothold for further studies on the signaling pathways of CHHs and their corresponding GPCRs.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yan Zhuang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| |
Collapse
|
5
|
Li WF, Zhang S, Chiu KH, Deng XY, Yi Y. Silencing of crustacean hyperglycemic hormone gene expression reveals the characteristic energy and metabolic changes in the gills and epidermis of crayfish Procambarus clarkii. Front Physiol 2024; 14:1349106. [PMID: 38269063 PMCID: PMC10806126 DOI: 10.3389/fphys.2023.1349106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
The crustacean hyperglycemic hormone (CHH) is a multifaceted neuropeptide instrumental in regulating carbohydrate and lipid metabolism, reproduction, osmoregulation, molting, and metamorphosis. Despite its significance, there is a dearth of research on its metabolic impact on the gills and epidermis-key organs in osmoregulation and molting processes. This study employed CHH dsRNA injections to silence CHH gene expression in Procambarus clarkii, followed by a metabolomic analysis of the gills and epidermis using nuclear magnetic resonance spectroscopy. Metabolic profiling through principal component analysis revealed the most pronounced changes at 24 h post-injection (hpi) in the epidermis and at 48 hpi in the gills. At 24 hpi, the epidermis exhibited significant modulation in 25 enrichment sets and 20 KEGG pathways, while at 48 hpi, 5 metabolite sets and 6 KEGG pathways were prominently regulated. Notably, pathways associated with amino acid metabolism, carbohydrate metabolism, and cofactor and vitamin metabolism were affected. A marked decrease in glucose and other carbohydrates suggested a compromised carbohydrate supply, whereas increased levels of citrate cycle intermediates implied a potential boost in energy provision. The silencing of CHH gene expression hampered the carbohydrate supply, which was possibly the main energy derived substrates. Conversely, the gills displayed significant alterations in 15 metabolite sets and 16 KEGG pathways at 48 hpi, with no significant changes at 24 hpi. These changes encompassed amino acid, carbohydrate, and lipid metabolism pathways. The decline in TCA cycle intermediates pointed to a potential downregulation of the cycle, whereas a decrease in ketone bodies indicated a shift towards lipid metabolism for energy production. Additionally, increased levels of nicotinate, nicotinamide, and quinolinate were observed in both organs. Overall, CHH's impact on the epidermis was prominent at 24 hpi and diminished thereafter, whereas its influence on metabolism in gills was delayed but intensified at 48 hpi. This differential CHH effect between gills and epidermis in P. clarkii provides new insights into the organ-specific regulatory mechanisms of CHH on energy metabolism and osmoregulation, warranting further comparative studies to elucidate the distinct roles of CHH in these organs.
Collapse
Affiliation(s)
- Wen-Feng Li
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Shan Zhang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
| | - Kuo-Hsun Chiu
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Xiao-Yun Deng
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
| | - Yi Yi
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
6
|
Jiang Q, Ji P, Ao S, Gao X, Zhang X. Effects of Starvation and Refeeding on Glucose Metabolism and Immune Responses in Macrobrachium rosenbergii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10218-3. [PMID: 37249812 DOI: 10.1007/s10126-023-10218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
Starvation is a common challenge for aquatic animals in both natural and cultured environments. To investigate the effects of starvation and refeeding on glucose metabolism and immunity in Macrobrachium rosenbergii, prawns were starved for 14 days and then refed for 7 days. Results showed that both glucose and trehalose levels decreased significantly at the beginning of starvation, followed by a significant decrease in glycogen content in the hepatopancreas and muscle. Triglyceride and total protein reserves were also mobilized under starvation, with a slightly quicker response from triglycerides. The mRNA levels of glycolysis (glucokinase) and anabolism-related enzymes (glycogen branching enzyme, diacylglycerol acyltransferase, and transpeptidase) decreased during starvation, while gluconeogenic potential was induced, as indicated by up-regulated transcriptional levels of gluconeogenic enzymes (phosphoenolpyruvate carboxykinase) and catabolism-related enzymes (glycogen debranching enzyme, adipose triglyceride lipase, and cathepsin B). Starvation also stimulated the expression of the crustacean hyperglycemic hormone and inhibited insulin-like peptide expression, indicating their potential role in glucose metabolism regulation. In addition, starvation increased the mRNA levels of superoxide dismutase and prophenoloxidase, indicating an influence on the immune system. After bacterial infection, starved prawns showed enhanced activity of non-specific immunological parameters and reduced mortality. Refeeding for 7 days led to a recovery of physiological and biochemical indices and transcriptional levels of metabolism/immune-related genes. Our findings provide a better understanding of the mechanisms underlying energy utilization, metabolic adaptation, and immune response to starvation in M. rosenbergii.
Collapse
Affiliation(s)
- Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Peng Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
7
|
Toyota K, Yamamoto T, Mori T, Mekuchi M, Miyagawa S, Ihara M, Shigenobu S, Ohira T. Eyestalk transcriptome and methyl farnesoate titers provide insight into the physiological changes in the male snow crab, Chionoecetes opilio, after its terminal molt. Sci Rep 2023; 13:7204. [PMID: 37137964 PMCID: PMC10156855 DOI: 10.1038/s41598-023-34159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
The snow crab, Chionoecetes opilio, is a giant deep-sea brachyuran. While several decapod crustaceans generally continue to molt and grow throughout their lifetime, the snow crab has a fixed number of molts. Adolescent males continue to molt proportionately to their previous size until the terminal molt at which time an allometric increase in chela size occurs and an alteration of behavioral activities occurs, ensuring breeding success. In this study, we investigated the circulating concentrations of methyl farnesoate (an innate juvenile hormone in decapods) (MF) before or after the terminal molt in males. We then conducted eyestalk RNAseq to obtain molecular insight into the regulation of physiological changes after the terminal molt. Our analyses revealed an increase in MF titers after the terminal molt. This MF surge may be caused by suppression of the genes that encode MF-degrading enzymes and mandibular organ-inhibiting hormone that negatively regulates MF biosynthesis. Moreover, our data suggests that behavioral changes after the terminal molt may be driven by the activation of biogenic amine-related pathways. These results are important not only for elucidating the physiological functions of MFs in decapod crustaceans, which are still largely unknown, but also for understanding the reproductive biology of the snow crab.
Collapse
Affiliation(s)
- Kenji Toyota
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa, 927-0553, Japan.
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan.
| | - Takeo Yamamoto
- Miyazu Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1721 Odasyukuno, Miyazu, Kyoto, 626-0052, Japan
| | - Tomoko Mori
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Miyuki Mekuchi
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Hukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Masaru Ihara
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku, Kochi, 783-8502, Japan
| | - Shuji Shigenobu
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan.
| |
Collapse
|
8
|
Tu S, Xu R, Wang M, Xie X, Bao C, Zhu D. Identification and characterization of expression profiles of neuropeptides and their GPCRs in the swimming crab, Portunus trituberculatus. PeerJ 2021; 9:e12179. [PMID: 34616625 PMCID: PMC8449533 DOI: 10.7717/peerj.12179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/29/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) regulate multiple physiological processes. Currently, little is known about the identity of native neuropeptides and their receptors in Portunus trituberculatus. This study employed RNA-sequencing and reverse transcription-polymerase chain reaction (RT-PCR) techniques to identify neuropeptides and their receptors that might be involved in regulation of reproductive processes of P. trituberculatus. In the central nervous system transcriptome data, 47 neuropeptide transcripts were identified. In further analyses, the tissue expression profile of 32 putative neuropeptide-encoding transcripts was estimated. Results showed that the 32 transcripts were expressed in the central nervous system and 23 of them were expressed in the ovary. A total of 47 GPCR-encoding transcripts belonging to two classes were identified, including 39 encoding GPCR-A family and eight encoding GPCR-B family. In addition, we assessed the tissue expression profile of 33 GPCRs (27 GPCR-As and six GPCR-Bs) transcripts. These GPCRs were found to be widely expressed in different tissues. Similar to the expression profiles of neuropeptides, 20 of these putative GPCR-encoding transcripts were also detected in the ovary. This is the first study to establish the identify of neuropeptides and their GPCRs in P. trituberculatus, and provide information for further investigations into the effect of neuropeptides on the physiology and behavior of decapod crustaceans.
Collapse
Affiliation(s)
- Shisheng Tu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Rui Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Mengen Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xi Xie
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Chenchang Bao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Dongfa Zhu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Zhang X, Pan L, Tong R, Li Y, Si L, Chen Y, Li D. The exploration of neuroendocrine regulation of crustacean hyperglycemic hormone (CHH) on innate immunity of Litopenaeus vannamei under ammonia-N stress. Mol Immunol 2021; 139:50-64. [PMID: 34454185 DOI: 10.1016/j.molimm.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022]
Abstract
To unveil the neuroendocrine-immune (NEI) mechanism of crustaceans under high ambient ammonia-N, crustacean hyperglycemic hormone (CHH) in L. vannamei was knocked down under 20 mg/L ammonia-N exposure. The results showed that the expression of CHH in the eyestalks decreased significantly when CHH was silenced. After CHH was knocked down, the levels of CHH, ACh, DA, NE, and 5-HT in the haemolymph decreased significantly. Correspondingly, the expressions of GC, ACh7R, DM1, DA1R, and 5-HT7R in haemocytes down-regulated significantly, while DA4R and α2AR up-regulated significantly. Besides, the expression of Toll3 reduced significantly. And significantly changes occurred in the levels of G protein effectors (AC and PLC), second messengers (cAMP, cGMP, CaM, and DAG), protein kinases (PKA, PKC and PKG), and nuclear transcription factors (CREB, Dorsal, Relish and NKRF). Furthermore, immune defense proteins (BGBP and PPO3, Crustin A, ALF, LYC, TNFα, and IL-16), phagocytosis-related proteins (Cubilin, Integrin, Peroxinectin, Mas-like protein, and Dynamin-1) and exocytosis-related proteins (SNAP-25, VAMP-2 and Syntaxin) changed significantly. Eventually, a significant decrease in the levels of THC, haemocytes phagocytosis rate, plasma PO, antibacterial and bacteriolytic activities was detected. Therefore, these results indicate that under ammonia-N stress, the combination of CHH and GC mainly affects exocytosis of shrimp through the cGMP-PKG-CREB pathway. Simultaneously, CHH stimulates the release of biogenic amines, and then activate G protein effectors after binding to their specific receptors, to regulate exocytosis mainly via the cAMP-PKA-CREB pathway and influence phagocytosis primarily by the cAMP-PKA-NF-κB pathway. CHH can enhance ACh, and then activate G protein effectors after binding to the receptors, and finally regulate exocytosis mainly through the cAMP-PKA-CREB pathway and regulate phagocytosis by the cAMP-PKA-NF-κB pathway. CHH can also promote Toll3-NF-κB pathway, thereby affecting the expressions of immune defense factors. This study contributes to a further understanding of the NEI mechanism of crustacean in response to environmental stress.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yuanjing Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
10
|
Xuan R, Wu H, Li Y, Wei B, Wang L. Comparative responses of Sinopotamon henanense to acute and sub-chronic Cd exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35038-35050. [PMID: 33665691 DOI: 10.1007/s11356-021-13230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Studies on the freshwater crab Sinopotamon henanense have shown that acute and sub-chronic Cd2+ exposure induced differential alterations in the respiratory physiology and gill morphology. To elucidate Cd2+ toxicity under these two exposure conditions, crabs were acutely exposed to 7.14, 14.28, and 28.55 mg/L Cd2+ for 96 h and sub-chronically exposed to 0.71, 1.43, and 2.86 mg/L Cd2+ for 3 weeks. The Cd2+ accumulation, total metallothionein (MT), superoxide dismutase, and malondialdehyde (MDA) contents in the gill tissues were detected. Moreover, the glucose-6-phosphate dehydrogenase (G6PDH) activity, NADPH content, reduced glutathione (GSH), oxidized glutathione (GSSG), and GSH/GSSG ratio in the hepatopancreas were determined. The morphology of the X-organ-sinus gland complex was also observed. The results showed that sub-chronical Cd2+ exposure induced lower MT content and higher MDA level in the gills than in the acute exposure. In the hepatopancreas, acute Cd2+ exposure decreased the pentose phosphate pathway activity and NADPH content; however, an increased G6PDH activity and NADPH content were detected in sub-chronic Cd2+ exposure (2.86 mg/L). Morphological changes occurred in the sinus gland in crabs exposed to 2.86 mg/L Cd2+ for 3 weeks. The tightly packed structure composed by the axons, enlarged terminals, and glial cells, became loose and porous. Ultra-structurally, a large number of vacuoles and few neurosecretory granules were observed in the axon terminal. These effects added to our understanding of the toxic effects of Cd2+ and provide biochemical and histopathological evidence for S. henanense as a biomarker of acute or long-term waterborne Cd2+ pollution.
Collapse
Affiliation(s)
- Ruijing Xuan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hao Wu
- Basic Medical School, Shanxi Medical University, Taiyuan, 030001, China
| | - Yingjun Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Bingyan Wei
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
11
|
Use of Pelleted Diets in Commercially Farmed Decapods during Juvenile Stages: A Review. Animals (Basel) 2021; 11:ani11061761. [PMID: 34204676 PMCID: PMC8231276 DOI: 10.3390/ani11061761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
The increasing market demand for decapods has led to a considerable interest in cultivating decapod species at a larger scale. Following the development of hatchery technologies, most research has focused on the development of formulated feeds for commercially farmed decapods once they enter the juvenile stages. The use of formulated feed for decapods at a commercial scale is still in the early stages. This is probably because of the unique feeding behavior that decapods possess: being robust, slow feeders and bottom dwellers, their feeding preferences change during the transition from pelagic larvae to benthic juveniles as their digestive systems develop and become more complex. The current practice of decapod aquaculture involves the provision of juveniles with food such as natural diet, live feed, and formulated feed. Knowledge of nutrient requirements enables diets to be better formulated. By manipulating the levels of proteins and lipids, a formulated feed can be expected to lead to optimal growth in decapods. At the same time, the pellet's physical characteristics are important factors to be considered upon formulating commercially farmed decapod feeds, considering the unique feeding behavior of the decapod. However, most published studies on decapod nutrition lack data on the physical characteristics of the feed types. Thus, it is difficult to establish a standard feed formulation that focuses on the physical pellet properties. Moreover, careful consideration must be given to the feeding behavior of species, as decapods are known as bottom feeders and are robust in terms of handling feed. Information on the pellet forms, diet composition, and unique feeding behaviors in commercially farmed decapods is gathered to suggest potential better formulated diets that can optimize growth and reproduction. Thus, the purpose of this review is to summarize the information that has been published to date and to come up with suggestions on ways to improve the feed formulation in decapods that comply with their feeding behavior and nutrient requirements. Further research is needed to explore the potential of the pelleted feed at the adult stage so the decapod can take full advantage of the nutrients present in the pellets.
Collapse
|
12
|
Effects of crustacean hyperglycaemic hormone RNA interference on regulation of glucose metabolism in Litopenaeus vannamei after ammonia-nitrogen exposure. Br J Nutr 2021; 127:823-836. [PMID: 33988091 DOI: 10.1017/s0007114521001574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To unveil the adaptation of Litopenaeus vannamei to elevated ambient ammonia-N, crustacean hyperglycaemic hormone (CHH) was knocked down to investigate its function in glucose metabolism pathway under ammonia-N exposure. When CHH was silenced, haemolymph glucose increased significantly during 3-6 h, decreased significantly during 12-48 h and recovered to the control groups' level at 72 h. After CHH knock-down, dopamine (DA) contents reduced significantly during 3-24 h, which recovered after 48 h. Besides, the expressions of guanylyl cyclase (GC) and DA1R in the hepatopancreas decreased significantly, while DA4R increased significantly. Correspondingly, the contents of cyclic AMP (cAMP), cyclic GMP (cGMP) and diacylglycerol (DAG) and the expressions of protein kinase A (PKA), protein kinase G (PKG), AMP active protein kinase α (AMPKα) and AMPKγ were significantly down-regulated, while the levels of protein kinase C (PKC) and AMPKβ were significantly up-regulated. The expressions of cyclic AMP response element-binding protein (CREB) and GLUT2 decreased significantly, while GLUT1 increased significantly. Moreover, glycogen content, glycogen synthase and glycogen phosphorylase activities in hepatopancreas and muscle were significantly increased. Furthermore, the levels of key enzymes hexokinase, pyruvate kinase and phosphofructokinase in glycolysis (GLY), rate-limiting enzymes citrate synthase in tricarboxylic acid and critical enzymes phosphoenolpyruvate carboxykinase, fructose diphosphate and glucose-6-phosphatase in gluconeogenesis (GNG) were significantly decreased in hepatopancreas. These results suggest that CHH affects DA and then they affect their receptors to transmit glucose metabolism signals into the hepatopancreas of L. vannamei under ammonia-N stress. CHH acts on the cGMP-PKG-AMPKα-CREB pathway through GC, and CHH affects DA to influence cAMP-PKA-AMPKγ-CREB and DAG-PKC-AMPKβ-CREB pathways, thereby regulating GLUT, inhibiting glycogen metabolism and promoting GLY and GNG. This study contributes to further understand glucose metabolism mechanism of crustacean in response to environmental stress.
Collapse
|
13
|
Bashkin A, Ghanim M, Abu-Farich B, Rayan M, Miari R, Srouji S, Rayan A, Falah M. Forty-One Plant Extracts Screened for Dual Antidiabetic and Antioxidant Functions: Evaluating the Types of Correlation between -Amylase Inhibition and Free Radical Scavenging. Molecules 2021; 26:molecules26020317. [PMID: 33435419 PMCID: PMC7827760 DOI: 10.3390/molecules26020317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/05/2022] Open
Abstract
Dysregulation of glucose homeostasis followed by chronic hyperglycemia is a hallmark of diabetes mellitus (DM), a disease spreading as a worldwide pandemic for which there is no satisfactory dietary treatment or cure. The development of glucose-controlling drugs that can prevent complications of DM, such as hyperglycemia and oxidative stress, which contribute to the impairment of the key physiological processes in the body, is of grave importance. In pursuit of this goal, this study screened 41 plant extracts for their antidiabetic and antioxidant activities by employing assays to test for α-amylase inhibition and free radical scavenging activity (FRSA) and by measuring glucose uptake in L6-GLUT4myc cells. While extracts of Rhus coriaria, Punica granatum, Olea europaea, Pelargonium spp., Stevia rebaudiana, and Petroselinum crispum demonstrated significant α-amylase inhibition, the extracts of Rhus coriaria and Pelargonium spp. also demonstrated increased FRSA, and the extract of Rhus coriaria stimulated glucose uptake. These natural extracts, which are believed to have fewer side effects because they are prepared from edible plants, interfere with the process in the small intestine that breaks down dietary carbohydrates into monosaccharide and disaccharide derivatives, and thereby suppress increases in diet-induced blood glucose; hence, they may have clinical value for type 2 diabetes management. The Pelargonium spp. and Rhus coriaria extracts demonstrated the highest antidiabetic and antioxidant activities. Both plants may offer valuable medical benefits, especially because they can be taken as dietary supplements by patients with diabetes and can serve as sources of new, natural-based antidiabetic drug candidates. The enhancement of cellular glucose uptake stimulated by Rhus coriaria extract could lead to the development of clinical applications that regulate blood glucose levels from within the circulatory system. Isolating bioactive substances from these plant extracts and testing them in diabetic mice will significantly advance the development of natural drugs that have both antidiabetic and free radical-scavenging properties, likely with lesser side effects.
Collapse
Affiliation(s)
- Amir Bashkin
- Galilee Medical Center, Institute for Medical Research, Nahariya 2210001, Israel; (A.B.); (M.G.); (R.M.); (S.S.)
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
| | - Manar Ghanim
- Galilee Medical Center, Institute for Medical Research, Nahariya 2210001, Israel; (A.B.); (M.G.); (R.M.); (S.S.)
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
| | - Basheer Abu-Farich
- Faculty of Science, Al-Qasemi Academic College, Baka EL-Garbiah 30100, Israel; (B.A.-F.); (M.R.)
| | - Mahmoud Rayan
- Faculty of Science, Al-Qasemi Academic College, Baka EL-Garbiah 30100, Israel; (B.A.-F.); (M.R.)
| | - Reem Miari
- Galilee Medical Center, Institute for Medical Research, Nahariya 2210001, Israel; (A.B.); (M.G.); (R.M.); (S.S.)
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
| | - Samer Srouji
- Galilee Medical Center, Institute for Medical Research, Nahariya 2210001, Israel; (A.B.); (M.G.); (R.M.); (S.S.)
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
| | - Anwar Rayan
- Faculty of Science, Al-Qasemi Academic College, Baka EL-Garbiah 30100, Israel; (B.A.-F.); (M.R.)
- Correspondence: (A.R.); (M.F.)
| | - Mizied Falah
- Galilee Medical Center, Institute for Medical Research, Nahariya 2210001, Israel; (A.B.); (M.G.); (R.M.); (S.S.)
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
- Correspondence: (A.R.); (M.F.)
| |
Collapse
|
14
|
Chen HY, Toullec JY, Lee CY. The Crustacean Hyperglycemic Hormone Superfamily: Progress Made in the Past Decade. Front Endocrinol (Lausanne) 2020; 11:578958. [PMID: 33117290 PMCID: PMC7560641 DOI: 10.3389/fendo.2020.578958] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Early studies recognizing the importance of the decapod eyestalk in the endocrine regulation of crustacean physiology-molting, metabolism, reproduction, osmotic balance, etc.-helped found the field of crustacean endocrinology. Characterization of putative factors in the eyestalk using distinct functional bioassays ultimately led to the discovery of a group of structurally related and functionally diverse neuropeptides, crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), and mandibular organ-inhibiting hormone (MOIH). These peptides, along with the first insect member (ion transport peptide, ITP), constitute the original arthropod members of the crustacean hyperglycemic hormone (CHH) superfamily. The presence of genes encoding the CHH-superfamily peptides across representative ecdysozoan taxa has been established. The objective of this review is to, aside from providing a general framework, highlight the progress made during the past decade or so. The progress includes the widespread identification of the CHH-superfamily peptides, in particular in non-crustaceans, which has reshaped the phylogenetic profile of the superfamily. Novel functions have been attributed to some of the newly identified members, providing exceptional opportunities for understanding the structure-function relationships of these peptides. Functional studies are challenging, especially for the peptides of crustacean and insect species, where they are widely expressed in various tissues and usually pleiotropic. Progress has been made in deciphering the roles of CHH, ITP, and their alternatively spliced counterparts (CHH-L, ITP-L) in the regulation of metabolism and ionic/osmotic hemostasis under (eco)physiological, developmental, or pathological contexts, and of MIH in the stimulation of ovarian maturation, which implicates it as a regulator for coordinating growth (molt) and reproduction. In addition, experimental elucidation of the steric structure and structure-function relationships have given better understanding of the structural basis of the functional diversification and overlapping among these peptides. Finally, an important finding was the first-ever identification of the receptors for this superfamily of peptides, specifically the receptors for ITPs of the silkworm, which will surely give great impetus to the functional study of these peptides for years to come. Studies regarding recent progress are presented and synthesized, and prospective developments remarked upon.
Collapse
Affiliation(s)
- Hsiang-Yin Chen
- Department of Aquaculture, National Penghu University of Science and Technology, Magong, Taiwan
| | - Jean-Yves Toullec
- Sorbonne Université, Faculté des Sciences, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Chi-Ying Lee
- Graduate Program of Biotechnology and Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
15
|
Diet composition and long-term starvation do not affect crustacean hyperglycemic hormone (CHH) transcription in the burrowing crab Neohelice granulata (Dana, 1851). Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110738. [DOI: 10.1016/j.cbpa.2020.110738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
|
16
|
Jiang Q, Jiang Z, Gu S, Qian L, Li X, Gao X, Zhang X. Insights into carbohydrate metabolism from an insulin-like peptide in Macrobrachium rosenbergii. Gen Comp Endocrinol 2020; 293:113478. [PMID: 32243957 DOI: 10.1016/j.ygcen.2020.113478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/15/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
This study identified an insulin-like peptide (ILP) in Macrobrachium rosenbergii termed Mr-ILP and further investigated its function through glucose injection and RNAi. With the analysis of five other glucose metabolism related genes, this study shed light on the molecular mechanism of carbohydrate metabolism in crustaceans. Mr-ILP shared the typical skeleton with six conserved cysteine and mainly expressed in neuroendocrine system. In M. rosenbergii, the elevated hemolymph glucose concentration after glucose injection returned to basal levels in short time, implying an efficient regulatory system in carbohydrate metabolism. Hyperglycemic related genes answered the elevated hemolymph glucose concentration quickly with significant decreased expression level, while Mr-ILP showed delayed response. Instead, glycolysis increased after glucose injection, which indicated glycolysis might play an important role in lowering the abnormally high glucose level. In vivo silencing of Mr-ILP, by injecting the prawns with double-stranded RNA (dsRNA) for 21 days reduced its expression by approximately 75%. Accordingly, glycogen synthase decreased and the trehalose and glycogen level in the hepatopancreas were significantly reduced, indicating the function of Mr-ILP in oligosaccharide and polysaccharide accumulation. When Mr-ILP was silenced, the expression of hyperglycemic related genes were enhanced, but the hemolymph glucose level was not elevated significantly, which might attribute to the increased glycolysis to keep a balanced glucose level in hemolymph.
Collapse
Affiliation(s)
- Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuwen Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lan Qian
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
17
|
Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chem 2020; 317:126346. [PMID: 32070843 DOI: 10.1016/j.foodchem.2020.126346] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/28/2022]
Abstract
The inhibitory mechanisms of ferulic acid against α-amylase and α-glucosidase were investigated by enzyme kinetic analysis, circular dichroism (CD), Fourier-transform infrared (FT-IR) spectroscopy, fluorescence quenching and molecular docking. Results indicated that ferulic acid strongly inhibited α-amylase (IC50: 0.622 mg ml-1) and α-glucosidase (IC50: 0.866 mg ml-1) by mixed and non-competitive mechanisms, respectively. CD spectra and fluorescence intensity measurements confirmed that the secondary structure of α-amylase and α-glucosidase were changed and the microenvironments of certain amino acid residues were modulated by the binding of ferulic acid. FT-IR spectra indicated that the interaction between ferulic acid and α-amylase/α-glucosidase mainly involved in non-covalent bonds. Molecular docking further demonstrated that the interaction forces between ferulic acid and α-amylase/α-glucosidase were hydrogen bonds, with the binding energy of -5.30 to -5.10 and -5.70 kcal mol-1, respectively. This study might provide a theoretical basis for the designing of novel functional foods with ferulic acid.
Collapse
|
18
|
Principe SC, Augusto A, Costa TM. Point-of-care testing for measuring haemolymph glucose in invertebrates is not a valid method. CONSERVATION PHYSIOLOGY 2019; 7:coz079. [PMID: 31798882 PMCID: PMC6882269 DOI: 10.1093/conphys/coz079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Blood glucose is widely used as a physiological parameter for vertebrates and invertebrates. However, its measurement in the field is often difficult due to the need for expensive and non-portable equipment. Point-of-care (POC) devices, originally intended for human use, are increasingly being used for measuring blood parameters of animals in the field. In this regard, POC glucose meters are becoming valuable tools for conservation physiologists, as glucose can be a useful indicator of stress response. In invertebrates, the use of POC glucose meters is still scarce, and no study yet has evaluated their usability in crustaceans and molluscs. We tested if a POC device can be used to measure haemolymph glucose in two widely used models, Leptuca thayeri and Perna perna, compared with a standard laboratory method. The device was unable to measure glucose in P. perna haemolymph due to equipment inaccuracy and low glucose concentration in this species (10.13 ± 6.25 mg/dL). Additionally, despite the device being capable of measuring glucose in L. thayeri haemolymph, Bland-Altman plots showed a strong bias and wide limits of agreement, and Lin's concordance correlation coefficient showed a weak concordance between methods. When simulating experimental conditions, POC results differed from those found using the standard method. We conclude that POC glucose meters are unsuitable for assessing glucose in mussels and should not be used in crabs as results are inaccurate.
Collapse
Affiliation(s)
- Silas C Principe
- São Paulo State University (UNESP), Biosciences Institute, Botucatu Campus, R. Prof. Dr. Antônio Celso, 250, 18618-000, Botucatu, São Paulo, Brazil
- São Paulo State University (UNESP), Biosciences Institute, Coastal Campus, Praça Infante Dom Henrique, s/n, P.O. Box: 73601, 11380-972, São Vicente, São Paulo, Brazil
| | - Alessandra Augusto
- São Paulo State University (UNESP), Biosciences Institute, Coastal Campus, Praça Infante Dom Henrique, s/n, P.O. Box: 73601, 11380-972, São Vicente, São Paulo, Brazil
- São Paulo State University (UNESP), CAUNESP, Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Tânia M Costa
- São Paulo State University (UNESP), Biosciences Institute, Botucatu Campus, R. Prof. Dr. Antônio Celso, 250, 18618-000, Botucatu, São Paulo, Brazil
- São Paulo State University (UNESP), Biosciences Institute, Coastal Campus, Praça Infante Dom Henrique, s/n, P.O. Box: 73601, 11380-972, São Vicente, São Paulo, Brazil
| |
Collapse
|