1
|
CRISPR/Cas9 in the era of nanomedicine and synthetic biology. Drug Discov Today 2023; 28:103375. [PMID: 36174966 DOI: 10.1016/j.drudis.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 02/02/2023]
Abstract
The CRISPR/Cas system was first discovered as a defense mechanism in bacteria and is now used as a tool for precise gene-editing applications. Rapidly evolving, it is increasingly applied in therapeutics. However, concerns about safety, specificity, and delivery still limit its potential. In this context, we introduce the concept of nanogenetics and speculate how the rational engineering of the CRISPR/Cas machinery could advance the biomedical field. In nanogenetics, the advantages of traditional approaches of synthetic biology could be expanded by nanotechnology approaches, enabling the design of a new generation of intrinsically safe and specific genome-editing platforms.
Collapse
|
2
|
Ding M, Lin J, Qin C, Wei P, Tian J, Lin T, Xu T. Application of synthetic biology in bladder cancer. Chin Med J (Engl) 2022; 135:2178-2187. [PMID: 36209735 PMCID: PMC9771244 DOI: 10.1097/cm9.0000000000002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT Bladder cancer (BC) is the most common malignant tumor of the genitourinary system. The age of individuals diagnosed with BC tends to decrease in recent years. A variety of standard therapeutic options are available for the clinical management of BC, but limitations exist. It is difficult to surgically eliminate small lesions, while radiation and chemotherapy damage normal tissues, leading to severe side effects. Therefore, new approaches are required to improve the efficacy and specificity of BC treatment. Synthetic biology is a field emerging in the last decade that refers to biological elements, devices, and materials that are artificially synthesized according to users' needs. In this review, we discuss how to utilize genetic elements to regulate BC-related gene expression periodically and quantitatively to inhibit the initiation and progression of BC. In addition, the design and construction of gene circuits to distinguish cancer cells from normal cells to kill the former but spare the latter are elaborated. Then, we introduce the development of genetically modified T cells for targeted attacks on BC. Finally, synthetic nanomaterials specializing in detecting and killing BC cells are detailed. This review aims to describe the innovative details of the clinical diagnosis and treatment of BC from the perspective of synthetic biology.
Collapse
Affiliation(s)
- Mengting Ding
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Jiaxing Lin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiahe Tian
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 528403, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
3
|
Xu H, Qiu Y, Xiong Z, Shao W, Zhang Q, Tang G. Tracking mesenchymal stem cells with Ir(III) complex-encapsulated nanospheres in cranium defect with postmenopausal osteoporosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111842. [PMID: 33641885 DOI: 10.1016/j.msec.2020.111842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023]
Abstract
Osteoporosis (OP) is a significant public health problem with associated fragility fractures, thereby causing large bone defects and difficulty in self-repair. The introduction of human mesenchymal stem cells (hMSCs) is the most promising platform in bone tissue engineering for OP therapy, which induces less side effects than conventional medication. However, the safety and efficiency of the cell-based OP therapy requires the ability to monitor the cell's outcome and biodistribution after cell transplantation. Therefore, we designed an in vivo system to track hMSCs in real time and simultaneously attempted to obtain a significant therapeutic effect during the bone repair process. In this study, we synthesized Ir(III) complex, followed by encapsulation with biodegradable methoxy-poly(ethylene glycol) poly(lactic-co-glycolic acid) nanospheres through double emulsions strategy. The Ir(III) complex nanospheres did not affect hMSC proliferation, stemness, and differentiation and realized highly efficient and long-term cellular labeling for at least 25 days in vivo. The optimal transplantation conditions were also determined first by injecting a gradient number of labeled hMSCs percutaneously into the cranial defect of the nude mouse model. Next, we applied this method to ovariectomy-induced OP mice. Results showed long-term optical imaging with high fluorescence intensity and computed tomography (CT) scanning with significantly increased bone formation between the osteoporotic and sham-operated bones. During the tracking process, two mice from each group were sacrificed at two representative time points to examine the bony defect bridging via micro-CT morphometric analyses. Our data showed remarkable promise for efficient hMSC tracking and encouraging treatment in bioimaging-guided OP stem cell therapy.
Collapse
Affiliation(s)
- Hong Xu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yanchang Road, Shanghai 200072, P. R. China; Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, No. 98 Nantong West Road, Yangzhou, Jiangsu 225001, P. R. China
| | - Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuogang Xiong
- Department of Radiology, Ping An Healthcare Diagnostics Center, No. 199 Kaibin Road, Shanghai 200030, P. R. China
| | - Wenjun Shao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qi Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yanchang Road, Shanghai 200072, P. R. China.
| |
Collapse
|
4
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules 2020; 10:biom10050734. [PMID: 32397082 PMCID: PMC7278167 DOI: 10.3390/biom10050734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
The genome of Streptomyces encodes a high number of natural product (NP) biosynthetic gene clusters (BGCs). Most of these BGCs are not expressed or are poorly expressed (commonly called silent BGCs) under traditional laboratory experimental conditions. These NP BGCs represent an unexplored rich reservoir of natural compounds, which can be used to discover novel chemical compounds. To activate silent BGCs for NP discovery, two main strategies, including the induction of BGCs expression in native hosts and heterologous expression of BGCs in surrogate Streptomyces hosts, have been adopted, which normally requires genetic manipulation. So far, various genome editing technologies have been developed, which has markedly facilitated the activation of BGCs and NP overproduction in their native hosts, as well as in heterologous Streptomyces hosts. In this review, we summarize the challenges and recent advances in genome editing tools for Streptomyces genetic manipulation with a focus on editing tools based on clustered regularly interspaced short palindrome repeat (CRISPR)/CRISPR-associated protein (Cas) systems. Additionally, we discuss the future research focus, especially the development of endogenous CRISPR/Cas-based genome editing technologies in Streptomyces.
Collapse
|