1
|
Di Lorenzo D. Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross-Interactions and Therapeutic Strategies. ChemMedChem 2024; 19:e202400180. [PMID: 39031682 DOI: 10.1002/cmdc.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Tau, a microtubule-associated protein (MAP), is essential to maintaining neuronal stability and function in the healthy brain. However, aberrant modifications and pathological aggregations of Tau are implicated in various neurodegenerative disorders, collectively known as tauopathies. The most common Tauopathy is Alzheimer's Disease (AD) counting nowadays more than 60 million patients worldwide. This comprehensive review delves into the multifaceted realm of Tau protein, puzzling out its intricate involvement in both physiological and pathological roles. Emphasis is put on Tau Protein-Protein Interactions (PPIs), depicting its interaction with tubulin, microtubules and its cross-interaction with other proteins such as Aβ1-42, α-synuclein, and the chaperone machinery. In the realm of therapeutic strategies, an overview of diverse possibilities is presented with their relative clinical progresses. The focus is mostly addressed to Tau protein aggregation inhibitors including recent small molecules, short peptides and peptidomimetics with specific focus on compounds that showed a double anti aggregative activity on both Tau protein and Aβ amyloid peptide. This review amalgamates current knowledge on Tau protein and evolving therapeutic strategies, providing a comprehensive resource for researchers seeking to deepen their understanding of the Tau protein and for scientists involved in the development of new peptide-based anti-aggregative Tau compounds.
Collapse
Affiliation(s)
- Davide Di Lorenzo
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| |
Collapse
|
2
|
Wang J, Zheng P, Yu J, Yang X, Zhang J. Rational design of small-sized peptidomimetic inhibitors disrupting protein-protein interaction. RSC Med Chem 2024; 15:2212-2225. [PMID: 39026653 PMCID: PMC11253864 DOI: 10.1039/d4md00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 07/20/2024] Open
Abstract
Protein-protein interactions are fundamental to nearly all biological processes. Due to their structural flexibility, peptides have emerged as promising candidates for developing inhibitors targeting large and planar PPI interfaces. However, their limited drug-like properties pose challenges. Hence, rational modifications based on peptide structures are anticipated to expedite the innovation of peptide-based therapeutics. This review comprehensively examines the design strategies for developing small-sized peptidomimetic inhibitors targeting PPI interfaces, which predominantly encompass two primary categories: peptidomimetics with abbreviated sequences and low molecular weights and peptidomimetics mimicking secondary structural conformations. We have also meticulously detailed several instances of designing and optimizing small-sized peptidomimetics targeting PPIs, including MLL1-WDR5, PD-1/PD-L1, and Bak/Bcl-xL, among others, to elucidate the potential application prospects of these design strategies. Hopefully, this review will provide valuable insights and inspiration for the future development of PPI small-sized peptidomimetic inhibitors in pharmaceutical research endeavors.
Collapse
Affiliation(s)
- Junyuan Wang
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Xiuyan Yang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University Shanghai 200025 China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
3
|
Taya T, Kami D, Teruyama F, Matoba S, Gojo S. Peptide-encoding gene transfer to modulate intracellular protein-protein interactions. Mol Ther Methods Clin Dev 2024; 32:101226. [PMID: 38516692 PMCID: PMC10952081 DOI: 10.1016/j.omtm.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Abstract
Peptide drug discovery has great potential, but the cell membrane is a major obstacle when the target is an intracellular protein-protein interaction (PPI). It is difficult to target PPIs with small molecules; indeed, there are no intervention tools that can target any intracellular PPI. In this study, we developed a platform that enables the introduction of peptides into cells via mRNA-based gene delivery. Peptide-length nucleic acids do not enable stable ribosome binding and exhibit little to no translation into protein. In this study, a construct was created in which the sequence encoding dihydrofolate reductase (DHFR) was placed in front of the sequence encoding the target peptide, together with a translation skipping sequence, as a sequence that meets the requirements of promoting ribosome binding and rapid decay of the translated protein. This enabled efficient translation from the mRNA encoding the target protein while preventing unnecessary protein residues. Using this construct, we showed that it can inhibit Drp1/Fis1 binding, one of the intracellular PPIs, which governs mitochondrial fission, an important aspect of mitochondrial dynamics. In addition, it was shown to inhibit pathological hyperfission, normalize mitochondrial dynamics and metabolism, and inhibit apoptosis of the mitochondrial pathway.
Collapse
Affiliation(s)
- Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Pharmacology Research Department, Tokyo New Drug Research Laboratories, Kowa Company, Ltd, Tokyo, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Angera IJ, Wright MM, Del Valle JR. Beyond N-Alkylation: Synthesis, Structure, and Function of N-Amino Peptides. Acc Chem Res 2024; 57:1287-1297. [PMID: 38626119 DOI: 10.1021/acs.accounts.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The growing list of physiologically important protein-protein interactions (PPIs) has amplified the need for compounds to target topologically complex biomolecular surfaces. In contrast to small molecules, peptide and protein mimics can exhibit three-dimensional shape complementarity across a large area and thus have the potential to significantly expand the "druggable" proteome. Strategies to stabilize canonical protein secondary structures without sacrificing side-chain content are particularly useful in the design of peptide-based chemical probes and therapeutics.Substitution of the backbone amide in peptides represents a subtle chemical modification with profound effects on conformation and stability. Studies focused on N-alkylation have already led to broad-ranging applications in peptidomimetic design. Inspired by nonribosomal peptide natural products harboring amide N-oxidations, we envisioned that main-chain hydrazide and hydroxamate bonds would impose distinct conformational preferences and offer unique opportunities for backbone diversification. This Account describes our exploration of peptide N-amination as a strategy for stabilizing canonical protein folds and for the structure-based design of soluble amyloid mimics.We developed a general synthetic protocol to access N-amino peptides (NAPs) on solid support. In an effort to stabilize β-strand conformation, we designed stitched peptidomimetics featuring covalent tethering of the backbone N-amino substituent to the preceding residue side chain. Using a combination of NMR, X-ray crystallography, and molecular dynamics simulations, we discovered that backbone N-amination alone could significantly stabilize β-hairpin conformation in multiple models of folding. Our studies revealed that the amide NH2 substituent in NAPs participates in cooperative noncovalent interactions that promote β-sheet secondary structure. In contrast to Cα-substituted α-hydrazino acids, we found that N-aminoglycine and its N'-alkylated derivatives instead stabilize polyproline II (PPII) conformation. The reactivity of hydrazides also allows for late-stage peptide macrocyclization, affording novel covalent surrogates of side-chain-backbone H-bonds.The pronounced β-sheet propensity of Cα-substituted α-hydrazino acids prompted us to target amyloidogenic proteins using NAP-based β-strand mimics. Backbone N-amination was found to render aggregation-prone lead sequences soluble and resistant to proteolysis. Inhibitors of Aβ and tau identified through N-amino scanning blocked protein aggregation and the formation of mature fibrils in vitro. We further identified NAP-based single-strand and cross-β tau mimics capable of inhibiting the prion-like cellular seeding activity of recombinant and patient-derived tau fibrils.Our studies establish backbone N-amination as a valuable addition to the peptido- and proteomimetic tool kit. α-Hydrazino acids show particular promise as minimalist β-strand mimics that retain side-chain information. Late-stage derivatization of hydrazides also provides facile entry into libraries of backbone-edited peptides. We anticipate that NAPs will thus find applications in the development of optimally constrained folds and modulators of PPIs.
Collapse
Affiliation(s)
- Isaac J Angera
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Madison M Wright
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Čakić Semenčić M, Kovačević M, Barišić L. Recent Advances in the Field of Amino Acid-Conjugated Aminoferrocenes-A Personal Perspective. Int J Mol Sci 2024; 25:4810. [PMID: 38732028 PMCID: PMC11084972 DOI: 10.3390/ijms25094810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The development of turn-based inhibitors of protein-protein interactions has attracted considerable attention in medicinal chemistry. Our group has synthesized a series of peptides derived from an amino-functionalized ferrocene to investigate their potential to mimic protein turn structures. Detailed DFT and spectroscopic studies (IR, NMR, CD) have shown that, for peptides, the backbone chirality and bulkiness of the amino acid side chains determine the hydrogen-bond pattern, allowing tuning of the size of the preferred hydrogen-bonded ring in turn-folded structures. However, their biological potential is more dependent on their lipophilicity. In addition, our pioneering work on the chiroptical properties of aminoferrocene-containing peptides enables the correlation of their geometry with the sign of the CD signal in the absorption region of the ferrocene chromophore. These studies have opened up the possibility of using aminoferrocene and its derivatives as chirooptical probes for the determination of various chirality elements, such as the central chirality of amino acids and the helicity of peptide sequences.
Collapse
Affiliation(s)
| | | | - Lidija Barišić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.Č.S.); (M.K.)
| |
Collapse
|
6
|
Andrikopoulos N, Tang H, Wang Y, Liang X, Li Y, Davis TP, Ke PC. Exploring Peptido-Nanocomposites in the Context of Amyloid Diseases. Angew Chem Int Ed Engl 2024; 63:e202309958. [PMID: 37943171 DOI: 10.1002/anie.202309958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Therapeutic peptides are a major class of pharmaceutical drugs owing to their target-binding specificity as well as their versatility in inhibiting aberrant protein-protein interactions associated with human pathologies. Within the realm of amyloid diseases, the use of peptides and peptidomimetics tailor-designed to overcome amyloidogenesis has been an active research endeavor since the late 90s. In more recent years, incorporating nanoparticles for enhancing the biocirculation and delivery of peptide drugs has emerged as a frontier in nanomedicine, and nanoparticles have further demonstrated a potency against amyloid aggregation and cellular inflammation to rival strategies employing small molecules, peptides, and antibodies. Despite these efforts, however, a fundamental understanding of the chemistry, characteristics and function of peptido-nanocomposites is lacking, and a systematic analysis of such strategy for combating a range of amyloid pathogeneses is missing. Here we review the history, principles and evolving chemistry of constructing peptido-nanocomposites from bottom up and discuss their future application against amyloid diseases that debilitate a significant portion of the global population.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yue Wang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Xiufang Liang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Thomas P Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
7
|
Wang Y, Zhang L, Liu C, Luo Y, Chen D. Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies. Pharmaceutics 2024; 16:240. [PMID: 38399294 PMCID: PMC10893007 DOI: 10.3390/pharmaceutics16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide-drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide-drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions.
Collapse
Affiliation(s)
- Yubo Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, China;
| | - Lu Zhang
- School of Life Sciences, Xiamen University, Xiamen 361005, China;
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 351002, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
8
|
de Raffele D, Ilie IM. Unlocking novel therapies: cyclic peptide design for amyloidogenic targets through synergies of experiments, simulations, and machine learning. Chem Commun (Camb) 2024; 60:632-645. [PMID: 38131333 DOI: 10.1039/d3cc04630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Existing therapies for neurodegenerative diseases like Parkinson's and Alzheimer's address only their symptoms and do not prevent disease onset. Common therapeutic agents, such as small molecules and antibodies struggle with insufficient selectivity, stability and bioavailability, leading to poor performance in clinical trials. Peptide-based therapeutics are emerging as promising candidates, with successful applications for cardiovascular diseases and cancers due to their high bioavailability, good efficacy and specificity. In particular, cyclic peptides have a long in vivo stability, while maintaining a robust antibody-like binding affinity. However, the de novo design of cyclic peptides is challenging due to the lack of long-lived druggable pockets of the target polypeptide, absence of exhaustive conformational distributions of the target and/or the binder, unknown binding site, methodological limitations, associated constraints (failed trials, time, money) and the vast combinatorial sequence space. Hence, efficient alignment and cooperation between disciplines, and synergies between experiments and simulations complemented by popular techniques like machine-learning can significantly speed up the therapeutic cyclic-peptide development for neurodegenerative diseases. We review the latest advancements in cyclic peptide design against amyloidogenic targets from a computational perspective in light of recent advancements and potential of machine learning to optimize the design process. We discuss the difficulties encountered when designing novel peptide-based inhibitors and we propose new strategies incorporating experiments, simulations and machine learning to design cyclic peptides to inhibit the toxic propagation of amyloidogenic polypeptides. Importantly, these strategies extend beyond the mere design of cyclic peptides and serve as template for the de novo generation of (bio)materials with programmable properties.
Collapse
Affiliation(s)
- Daria de Raffele
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Ioana M Ilie
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
9
|
La Manna S, Di Natale C, Panzetta V, Leone M, Mercurio FA, Cipollone I, Monti M, Netti PA, Ferraro G, Terán A, Sánchez-Peláez AE, Herrero S, Merlino A, Marasco D. A Diruthenium Metallodrug as a Potent Inhibitor of Amyloid-β Aggregation: Synergism of Mechanisms of Action. Inorg Chem 2024; 63:564-575. [PMID: 38117944 PMCID: PMC10777406 DOI: 10.1021/acs.inorgchem.3c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
The physical and chemical properties of paddlewheel diruthenium compounds are highly dependent on the nature of the ligands surrounding the bimetallic core. Herein, we compare the ability of two diruthenium compounds, [Ru2Cl(D-p-FPhF)(O2CCH3)3]·H2O (1) (D-p-FPhF- = N,N'-bis(4-fluorophenyl)formamidinate) and K3[Ru2(O2CO)4]·3H2O (2), to act as inhibitors of amyloid aggregation of the Aβ1-42 peptide and its peculiar fragments, Aβ1-16 and Aβ21-40. A wide range of biophysical techniques has been used to determine the inhibition capacity against aggregation and the possible mechanism of action of these compounds (Thioflavin T fluorescence and autofluorescence assays, UV-vis absorption spectroscopy, circular dichroism, nuclear magnetic resonance, mass spectrometry, and electron scanning microscopy). Data show that the most effective inhibitory effect is shown for compound 1. This compound inhibits fiber formation and completely abolishes the cytotoxicity of Aβ1-42. The antiaggregatory capacity of this complex can be explained by a binding mechanism of the dimetallic units to the peptide chain along with π-π interactions between the formamidinate ligand and the aromatic side chains. The results suggest the potential use of paddlewheel diruthenium complexes as neurodrugs and confirm the importance of the steric and charge effects on the properties of diruthenium compounds.
Collapse
Affiliation(s)
- Sara La Manna
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Concetta Di Natale
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Valeria Panzetta
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary
Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Marilisa Leone
- Institute
of Biostructures and Bioimaging - CNR, 80145 Naples, Italy
| | | | - Irene Cipollone
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie
Avanzate “Franco Salvatore” S.c.a r.l., 80131 Naples, Italy
| | - Maria Monti
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie
Avanzate “Franco Salvatore” S.c.a r.l., 80131 Naples, Italy
| | - Paolo A. Netti
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary
Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Aarón Terán
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Ana E. Sánchez-Peláez
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Santiago Herrero
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Daniela Marasco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
- Institute
of Biostructures and Bioimaging - CNR, 80145 Naples, Italy
| |
Collapse
|
10
|
Oeller M, Kang RJD, Bolt HL, Gomes Dos Santos AL, Weinmann AL, Nikitidis A, Zlatoidsky P, Su W, Czechtizky W, De Maria L, Sormanni P, Vendruscolo M. Sequence-based prediction of the intrinsic solubility of peptides containing non-natural amino acids. Nat Commun 2023; 14:7475. [PMID: 37978172 PMCID: PMC10656490 DOI: 10.1038/s41467-023-42940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Non-natural amino acids are increasingly used as building blocks in the development of peptide-based drugs as they expand the available chemical space to tailor function, half-life and other key properties. However, while the chemical space of modified amino acids (mAAs) such as residues containing post-translational modifications (PTMs) is potentially vast, experimental methods for measuring the developability properties of mAA-containing peptides are expensive and time consuming. To facilitate developability programs through computational methods, we present CamSol-PTM, a method that enables the fast and reliable sequence-based prediction of the intrinsic solubility of mAA-containing peptides in aqueous solution at room temperature. From a computational screening of 50,000 mAA-containing variants of three peptides, we selected five different small-size mAAs for a total number of 37 peptide variants for experimental validation. We demonstrate the accuracy of the predictions by comparing the calculated and experimental solubility values. Our results indicate that the computational screening of mAA-containing peptides can extend by over four orders of magnitude the ability to explore the solubility chemical space of peptides and confirm that our method can accurately assess the solubility of peptides containing mAAs. This method is available as a web server at https://www-cohsoftware.ch.cam.ac.uk/index.php/camsolptm .
Collapse
Affiliation(s)
- Marc Oeller
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ryan J D Kang
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hannah L Bolt
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ana L Gomes Dos Santos
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Annika Langborg Weinmann
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Antonios Nikitidis
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pavol Zlatoidsky
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Wu Su
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Werngard Czechtizky
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leonardo De Maria
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Shi C, Kaffy J, Ha-Duong T, Gallard JF, Pruvost A, Mabondzo A, Ciccone L, Ongeri S, Tonali N. Proteolytically Stable Diaza-Peptide Foldamers Mimic Helical Hot Spots of Protein-Protein Interactions and Act as Natural Chaperones. J Med Chem 2023; 66:12005-12017. [PMID: 37632446 DOI: 10.1021/acs.jmedchem.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
A novel class of peptidomimetic foldamers based on diaza-peptide units are reported. Circular dichroism, attenuated total reflection -Fourier transform infrared, NMR, and molecular dynamics studies demonstrate that unlike the natural parent nonapeptide, the specific incorporation of one diaza-peptide unit at the N-terminus allows helical folding in water, which is further reinforced by the introduction of a second unit at the C-terminus. The ability of these foldamers to resist proteolysis, to mimic the small helical hot spot of transthyretin-amyloid β (Aβ) cross-interaction, and to decrease pathological Aβ aggregation demonstrates that the introduction of diaza-peptide units is a valid approach for designing mimics or inhibitors of protein-protein interaction and other therapeutic peptidomimetics. This study also reveals that small peptide foldamers can play the same role as physiological chaperone proteins and opens a new way to design inhibitors of amyloid protein aggregation, a hallmark of more than 20 serious human diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Chenghui Shi
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Julia Kaffy
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Jean-François Gallard
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190 Gif sur Yvette, France
| | - Alain Pruvost
- CEA, INRAE, Département Médicaments et Technologies pour La Santé, Université Paris-Saclay, SPI 91191 Gif-sur-Yvette, France
| | - Aloise Mabondzo
- CEA, INRAE, Département Médicaments et Technologies pour La Santé, Université Paris-Saclay, SPI 91191 Gif-sur-Yvette, France
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Sandrine Ongeri
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Nicolo Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| |
Collapse
|
12
|
Dahal A, Subramanian V, Shrestha P, Liu D, Gauthier T, Jois S. Conformationally constrained cyclic grafted peptidomimetics targeting protein-protein interactions. Pept Sci (Hoboken) 2023; 115:e24328. [PMID: 38188985 PMCID: PMC10769001 DOI: 10.1002/pep2.24328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/03/2023] [Indexed: 01/09/2024]
Abstract
Sunflower trypsin inhibitor-1 (SFTI-1) structure is used for designing grafted peptides as a possible therapeutic agent. The grafted peptide exhibits multiple conformations in solution due to the presence of proline in the structure of the peptide. To lock the grafted peptide into a major conformation in solution, a dibenzofuran moiety (DBF) was incorporated in the peptide backbone structure, replacing the Pro-Pro sequence. NMR studies indicated a major conformation of the grafted peptide in solution. Detailed structural studies suggested that SFTI-DBF adopts a twisted beta-strand structure in solution. The surface plasmon resonance analysis showed that SFTI-DBF binds to CD58 protein. A model for the protein-SFTI-DBF complex was proposed based on docking studies. These studies suggested that SFTI-1 grafted peptide can be used to design stable peptides for therapeutic purposes by grafting organic functional groups and amino acids. However, when a similar strategy was used with another grafted peptide, the resulting peptide did not produce a single major conformation, and its biological activity was lost. Thus, conformational constraints depend on the sequence of amino acids used for SFTI-1 grafting.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
| | - Vivekanandan Subramanian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803
| | - Dong Liu
- AgCenter Biotechnology Laboratory, LSU Agricultural Center, Baton Rouge, LA, 70803
| | - Ted Gauthier
- AgCenter Biotechnology Laboratory, LSU Agricultural Center, Baton Rouge, LA, 70803
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803
| |
Collapse
|
13
|
Heath SL, Horne WS, Lengyel GA. Effects of chirality and side chain length in C α,α-dialkylated residues on β-hairpin peptide folded structure and stability. Org Biomol Chem 2023; 21:6320-6324. [PMID: 37503895 PMCID: PMC10445279 DOI: 10.1039/d3ob00963g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Strategic incorporation of achiral Cα,α-dialkylated amino acids with bulky substituents into peptides can be used to promote extended strand conformations and inhibit protein-protein interactions associated with amyloid formation. In this work, we evaluate the thermodynamic impact of chiral Cα,α monomers on folding preferences in such systems through introduction of a series of Cα-methylated and Cα-ethylated residues into a β-hairpin host sequence. Depending on stereochemical configuration of the artificial monomer and potential for additional hydrophobic packing, a Cα-ethyl-Cα-propyl glycine residue can provide similar or enhanced folded stability relative to an achiral Cα,α-diethyl analogue.
Collapse
Affiliation(s)
- Shelby L Heath
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - George A Lengyel
- Department of Chemistry, Slippery Rock University, Slippery Rock, PA 16057, USA.
| |
Collapse
|
14
|
Banerjee A, Dutt M. A hybrid approach for coarse-graining helical peptoids: Solvation, secondary structure, and assembly. J Chem Phys 2023; 158:114105. [PMID: 36948821 DOI: 10.1063/5.0138510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Protein mimics such as peptoids form self-assembled nanostructures whose shape and function are governed by the side chain chemistry and secondary structure. Experiments have shown that a peptoid sequence with a helical secondary structure assembles into microspheres that are stable under various conditions. The conformation and organization of the peptoids within the assemblies remains unknown and is elucidated in this study via a hybrid, bottom-up coarse-graining approach. The resultant coarse-grained (CG) model preserves the chemical and structural details that are critical for capturing the secondary structure of the peptoid. The CG model accurately captures the overall conformation and solvation of the peptoids in an aqueous solution. Furthermore, the model resolves the assembly of multiple peptoids into a hemispherical aggregate that is in qualitative agreement with the corresponding results from experiments. The mildly hydrophilic peptoid residues are placed along the curved interface of the aggregate. The composition of the residues on the exterior of the aggregate is determined by two conformations adopted by the peptoid chains. Hence, the CG model simultaneously captures sequence-specific features and the assembly of a large number of peptoids. This multiscale, multiresolution coarse-graining approach could help in predicting the organization and packing of other tunable oligomeric sequences of relevance to biomedicine and electronics.
Collapse
Affiliation(s)
- Akash Banerjee
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Meenakshi Dutt
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
15
|
Benhamou Goldfajn N, Tang H, Ding F. Substoichiometric Inhibition of Insulin against IAPP Aggregation Is Attenuated by the Incompletely Processed N-Terminus of proIAPP. ACS Chem Neurosci 2022; 13:2006-2016. [PMID: 35704461 DOI: 10.1021/acschemneuro.2c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Substoichiometric aggregation inhibition of human islet amyloid polypeptide (IAPP), the hallmark of type 2 diabetes impacting millions of people, is crucial for developing clinic therapies, yet it remains challenging given that many candidate inhibitors require high doses. Intriguingly, insulin, the key regulatory polypeptide on blood glucose levels that are cosynthesized, costored, and cosecreted with IAPP by pancreatic β cells, has been identified as a potent inhibitor that can suppress IAPP amyloid aggregation at substoichiometric concentrations. Here, we computationally investigated the molecular mechanisms of the substoichiometric inhibition of insulin against the aggregation of IAPP and the incompletely processed IAPP (proIAPP) using discrete molecular dynamics simulations. Our results suggest that the amyloid aggregations of both IAPP and proIAPP might be disrupted by insulin through its binding with the shared amyloidogenic core sequences. However, the N-terminus of proIAPP competed with the amyloidogenic core sequences for the insulin interactions, resulting in attenuated inhibition by insulin. Moreover, insulin preferred to bind the elongation surfaces of IAPP seeds with fibril-like structure, with a stronger affinity than that of IAPP monomers. The capping of elongation surfaces by a small amount of insulin sterically prohibited the seed growth via monomer addition, achieving the substoichiometric inhibition. Together, our computational results provided molecular insights for the substoichiometric inhibition of insulin against IAPP aggregation, also the weakened effect on proIAPP. The uncovered substoichiometric inhibition by capping the elongation of amyloid seeds or fibrils may guide the rational designs of new potent inhibitors effective at low doses.
Collapse
Affiliation(s)
- Nadav Benhamou Goldfajn
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
16
|
Delaunay M, Ha-Duong T. Computational Tools and Strategies to Develop Peptide-Based Inhibitors of Protein-Protein Interactions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2405:205-230. [PMID: 35298816 DOI: 10.1007/978-1-0716-1855-4_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions play crucial and subtle roles in many biological processes and modifications of their fine mechanisms generally result in severe diseases. Peptide derivatives are very promising therapeutic agents for modulating protein-protein associations with sizes and specificities between those of small compounds and antibodies. For the same reasons, rational design of peptide-based inhibitors naturally borrows and combines computational methods from both protein-ligand and protein-protein research fields. In this chapter, we aim to provide an overview of computational tools and approaches used for identifying and optimizing peptides that target protein-protein interfaces with high affinity and specificity. We hope that this review will help to implement appropriate in silico strategies for peptide-based drug design that builds on available information for the systems of interest.
Collapse
Affiliation(s)
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France.
| |
Collapse
|
17
|
Singh MK, Lakshman MK. Recent developments in the utility of saturated azaheterocycles in peptidomimetics. Org Biomol Chem 2022; 20:963-979. [PMID: 35018952 DOI: 10.1039/d1ob01329g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To a large extent, the physical and chemical properties of peptidomimetic molecules are dictated by the integrated heterocyclic scaffolds they contain. Heterocyclic moieties are introduced into a majority of peptide-mimicking molecules to modulate conformational flexibility, improve bioavailability, and fine-tune electronics, and in order to achieve potency similar to or better than that of the natural peptide ligand. This mini-review delineates recent developments, limited to the past five years, in the utility of selected saturated 3- to 6-membered heterocyclic moieties in peptidomimetic design. Also discussed is the chemistry involved in the synthesis of the azaheterocyclic scaffolds and the structural implications of the introduction of these azaheterocycles in peptide backbones as well as side chains of the peptide mimics.
Collapse
Affiliation(s)
- Manish K Singh
- Department of Science, Technology, and Mathematics, Lincoln University, 820 Chestnut Street, Jefferson City, Missouri 65101, USA.
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
18
|
Plais L, Scheuermann J. Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chem Biol 2022; 3:7-17. [PMID: 35128404 PMCID: PMC8729180 DOI: 10.1039/d1cb00161b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
While macrocyclic peptides are extensively researched for therapeutically relevant protein targets, DNA-encoded chemical libraries (DELs) are developed at a quick pace to discover novel small molecule binders. The combination of both fields has been explored since 2004 and the number of macrocyclic peptide DELs is steadily increasing. Macrocycles with high affinity and potency were identified for diverse classes of proteins, revealing DEL's huge potential. By giving a historical perspective, we would like to review the methods which permitted the rise of macrocyclic peptide DELs, describe the different DELs which were created and discuss the achievements and challenges of this emerging field.
Collapse
Affiliation(s)
- Louise Plais
- Department of Chemistry and Applied Biosciences, ETH Zürich (Swiss Federal Institute of Technology) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zürich (Swiss Federal Institute of Technology) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|
19
|
Dahal A, Sonju JJ, Kousoulas KG, Jois SD. Peptides and peptidomimetics as therapeutic agents for Covid-19. Pept Sci (Hoboken) 2022; 114:e24245. [PMID: 34901700 PMCID: PMC8646791 DOI: 10.1002/pep2.24245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Covid-19 pandemic has caused high morbidity and mortality rates worldwide. Virus entry into cells can be blocked using several strategies, including inhibition of protein-protein interactions (PPIs) between the viral spike glycoprotein and cellular receptors, as well as blocking of spike protein conformational changes that are required for cleavage/activation and fusogenicity. The spike-mediated viral attachment and entry into cells via fusion of the viral envelope with cellular membranes involve PPIs mediated by short peptide fragments exhibiting particular secondary structures. Thus, peptides that can inhibit these PPIs may be used as potential antiviral agents preventing virus entry and spread. This review is focused on peptides and peptidomimetics as PPI modulators and protease inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| |
Collapse
|
20
|
Kovačević M, Čakić Semenčić M, Radošević K, Molčanov K, Roca S, Šimunović L, Kodrin I, Barišić L. Conformational Preferences and Antiproliferative Activity of Peptidomimetics Containing Methyl 1'-Aminoferrocene-1-carboxylate and Turn-Forming Homo- and Heterochiral Pro-Ala Motifs. Int J Mol Sci 2021; 22:ijms222413532. [PMID: 34948332 PMCID: PMC8705031 DOI: 10.3390/ijms222413532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The concept of peptidomimetics is based on structural modifications of natural peptides that aim not only to mimic their 3D shape and biological function, but also to reduce their limitations. The peptidomimetic approach is used in medicinal chemistry to develop drug-like compounds that are more active and selective than natural peptides and have fewer side effects. One of the synthetic strategies for obtaining peptidomimetics involves mimicking peptide α-helices, β-sheets or turns. Turns are usually located on the protein surface where they interact with various receptors and are therefore involved in numerous biological events. Among the various synthetic tools for turn mimetic design reported so far, our group uses an approach based on the insertion of different ferrocene templates into the peptide backbone that both induce turn formation and reduce conformational flexibility. Here, we conjugated methyl 1'-aminoferrocene-carboxylate with homo- and heterochiral Pro-Ala dipeptides to investigate the turn formation potential and antiproliferative properties of the resulting peptidomimetics 2-5. Detailed spectroscopic (IR, NMR, CD), X-ray and DFT studies showed that the heterochiral conjugates 2 and 3 were more suitable for the formation of β-turns. Cell viability study, clonogenic assay and cell death analysis showed the highest biological potential of homochiral peptide 4.
Collapse
Affiliation(s)
- Monika Kovačević
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.Č.S.); (L.Š.)
| | - Mojca Čakić Semenčić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.Č.S.); (L.Š.)
| | - Kristina Radošević
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Krešimir Molčanov
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Sunčica Roca
- NMR Centre, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Lucija Šimunović
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.Č.S.); (L.Š.)
| | - Ivan Kodrin
- Department of Organic Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (I.K.); (L.B.); Tel.: +385-1-4606-403 (I.K.); +385-1-4605-069 (L.B.)
| | - Lidija Barišić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.Č.S.); (L.Š.)
- Correspondence: (I.K.); (L.B.); Tel.: +385-1-4606-403 (I.K.); +385-1-4605-069 (L.B.)
| |
Collapse
|
21
|
Helton LG, Rideout HJ, Herberg FW, Kennedy EJ. Leucine rich repeat kinase 2 (
LRRK2
) peptide modulators: Recent advances and future directions. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Leah G. Helton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy University of Georgia Athens Georgia USA
| | - Hardy J. Rideout
- Center for Clinical, Experimental Surgery, and Translational Research Biomedical Research Foundation of the Academy of Athens Athens Greece
| | - Friedrich W. Herberg
- Department of Biochemistry Institute for Biology, University of Kassel Kassel Germany
| | - Eileen J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy University of Georgia Athens Georgia USA
| |
Collapse
|
22
|
Makwana KM, Sarnowski MP, Miao J, Lin YS, Del Valle JR. N-Amination Converts Amyloidogenic Tau Peptides into Soluble Antagonists of Cellular Seeding. ACS Chem Neurosci 2021; 12:3928-3938. [PMID: 34609825 PMCID: PMC9035343 DOI: 10.1021/acschemneuro.1c00528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spread of neurofibrillary tangles composed of tau protein aggregates is a hallmark of Alzheimer's and related neurodegenerative diseases. Early oligomerization of tau involves conformational reorganization into parallel β-sheet structures and supramolecular assembly into toxic fibrils. Despite the need for selective inhibitors of tau propagation, β-rich protein assemblies are inherently difficult to target with small molecules. Here, we describe a minimalist approach to mimic the aggregation-prone modules within tau. We carried out a backbone residue scan and show that amide N-amination completely abolishes the tendency of these peptides to self-aggregate, rendering them soluble mimics of ordered β-strands from the tau R2 and R3 domains. Several N-amino peptides (NAPs) inhibit tau fibril formation in vitro. We further demonstrate that NAPs 12 and 13 are effective at blocking the cellular seeding of endogenous tau by interacting with monomeric or fibrillar forms of extracellular tau. Peptidomimetic 12 is serum stable, non-toxic to neuronal cells, and selectivity inhibits the fibrilization of tau over Aβ42. Structural analysis of our lead NAPs shows considerable conformational constraint imposed by the N-amino groups. The described backbone N-amination approach provides a rational basis for the mimicry of other aggregation-prone peptides that drive pathogenic protein assembly.
Collapse
Affiliation(s)
- Kamlesh M Makwana
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew P Sarnowski
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
23
|
Lesma J, Bizet F, Berardet C, Tonali N, Pellegrino S, Taverna M, Khemtemourian L, Soulier JL, van Heijenoort C, Halgand F, Ha-Duong T, Kaffy J, Ongeri S. β-Hairpin Peptide Mimics Decrease Human Islet Amyloid Polypeptide (hIAPP) Aggregation. Front Cell Dev Biol 2021; 9:729001. [PMID: 34604227 PMCID: PMC8481668 DOI: 10.3389/fcell.2021.729001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Amyloid diseases are degenerative pathologies, highly prevalent today because they are closely related to aging, that have in common the erroneous folding of intrinsically disordered proteins (IDPs) which aggregate and lead to cell death. Type 2 Diabetes involves a peptide called human islet amyloid polypeptide (hIAPP), which undergoes a conformational change, triggering the aggregation process leading to amyloid aggregates and fibers rich in β-sheets mainly found in the pancreas of all diabetic patients. Inhibiting the aggregation of amyloid proteins has emerged as a relevant therapeutic approach and we have recently developed the design of acyclic flexible hairpins based on peptidic recognition sequences of the amyloid β peptide (Aβ1–42) as a successful strategy to inhibit its aggregation involved in Alzheimer’s disease. The present work reports the extension of our strategy to hIAPP aggregation inhibitors. The design, synthesis, conformational analyses, and biophysical evaluations of dynamic β-hairpin like structures built on a piperidine-pyrrolidine β-turn inducer are described. By linking to this β-turn inducer three different arms (i) pentapeptide, (ii) tripeptide, and (iii) α/aza/aza/pseudotripeptide, we demonstrate that the careful selection of the peptide-based arms from the sequence of hIAPP allowed to selectively modulate its aggregation, while the peptide character can be decreased. Biophysical assays combining, Thioflavin-T fluorescence, transmission electronic microscopy, capillary electrophoresis, and mass spectrometry showed that the designed compounds inhibit both the oligomerization and the fibrillization of hIAPP. They are also capable to decrease the aggregation process in the presence of membrane models and to strongly delay the membrane-leakage induced by hIAPP. More generally, this work provides the proof of concept that our rational design is a versatile and relevant strategy for developing efficient and selective inhibitors of aggregation of amyloidogenic proteins.
Collapse
Affiliation(s)
- Jacopo Lesma
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Faustine Bizet
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Corentin Berardet
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France.,Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nicolo Tonali
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sara Pellegrino
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini," Università degli Studi di Milano, Milan, Italy
| | - Myriam Taverna
- Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Lucie Khemtemourian
- Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Polytechnique Bordeaux, CNRS UMR 5248, Université de Bordeaux, Pessac, France
| | | | - Carine van Heijenoort
- ICSN, Equipe Biologie et Chimie Structurales, Département de Chimie et Biologie Structurales et Analytiques, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Equipe Chimie Analytique Physicochimie Réactivité des Ions, CNRS, Université Paris-Saclay, Orsay, France
| | - Tâp Ha-Duong
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Julia Kaffy
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
24
|
Skjånes K, Aesoy R, Herfindal L, Skomedal H. Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity. PHYSIOLOGIA PLANTARUM 2021; 173:612-623. [PMID: 34085279 DOI: 10.1111/ppl.13472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
In addition to the rapidly expanding field of using microalgae for food and feed, microalgae represent a tremendous potential for new bioactive compounds with health-promoting effects. One field where new therapeutics is needed is cancer therapy. As cancer therapy often cause severe side effects and loose effect due to development of drug resistance, new therapeutic agents are needed. Treating cancer by modulating the immune response using peptides has led to unprecedented responses in patients. In this review, we want to elucidate the potential for microalgae as a source of new peptides for possible use in cancer management. Among the limited studies on anti-cancer effects of peptides, positive results were found in a total of six different forms of cancer. The majority of studies have been performed with different strains of Chlorella, but effects have also been found using peptides from other species. This is also the case for peptides with immunomodulating effects and peptides with other health-promoting effects (e.g., role in cardiovascular diseases). However, the active peptide sequence has been determined in only half of the studies. In many cases, the microalga strain and the cultivation conditions used for producing the algae have not been reported. The low number of species that have been explored, as opposed to the large number of species available, is a clear indication that the potential for new discoveries is large. Additionally, the availability and cost-effectiveness of microalgae make them attractive in the search for bioactive peptides to prevent cancer.
Collapse
Affiliation(s)
- Kari Skjånes
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Reidun Aesoy
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Hanne Skomedal
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
25
|
Ramesh M, Acharya A, Murugan NA, Ila H, Govindaraju T. Thiophene-Based Dual Modulators of Aβ and Tau Aggregation. Chembiochem 2021; 22:3348-3357. [PMID: 34546619 DOI: 10.1002/cbic.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid beta (Aβ) and Tau aggregates in the brain, which induces various pathological events resulting in neurodegeneration. There have been continuous efforts to develop modulators of the Aβ and Tau aggregation process to halt or modify disease progression. A few small-molecule-based inhibitors that target both Aβ and Tau pathology have been reported. Here, we report the screening of a targeted library of small molecules to modulate Aβ and Tau aggregation together with their in vitro, in silico and cellular studies. In vitro ThT fluorescence assay, dot blot assay, gel electrophoresis and transmission electron microscopy (TEM) results have shown that thiophene-based lead molecules effectively modulate Aβ aggregation and inhibit Tau aggregation. In silico studies performed by employing molecular docking, molecular dynamics and binding-free energy calculations have helped in understanding the mechanism of interaction of the lead thiophene compounds with Aβ and Tau fibril targets. In cellulo studies revealed that the lead candidate is biocompatible and effectively ameliorates neuronal cells from Aβ and Tau-mediated amyloid toxicity.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Anand Acharya
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Hiriyakkanavar Ila
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
26
|
Wendt M, Bellavita R, Gerber A, Efrém NL, van Ramshorst T, Pearce NM, Davey PRJ, Everard I, Vazquez-Chantada M, Chiarparin E, Grieco P, Hennig S, Grossmann TN. Bicyclic β-Sheet Mimetics that Target the Transcriptional Coactivator β-Catenin and Inhibit Wnt Signaling. Angew Chem Int Ed Engl 2021; 60:13937-13944. [PMID: 33783110 PMCID: PMC8252567 DOI: 10.1002/anie.202102082] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Protein complexes are defined by the three-dimensional structure of participating binding partners. Knowledge about these structures can facilitate the design of peptidomimetics which have been applied for example, as inhibitors of protein-protein interactions (PPIs). Even though β-sheets participate widely in PPIs, they have only rarely served as the basis for peptidomimetic PPI inhibitors, in particular when addressing intracellular targets. Here, we present the structure-based design of β-sheet mimetics targeting the intracellular protein β-catenin, a central component of the Wnt signaling pathway. Based on a protein binding partner of β-catenin, a macrocyclic peptide was designed and its crystal structure in complex with β-catenin obtained. Using this structure, we designed a library of bicyclic β-sheet mimetics employing a late-stage diversification strategy. Several mimetics were identified that compete with transcription factor binding to β-catenin and inhibit Wnt signaling in cells. The presented design strategy can support the development of inhibitors for other β-sheet-mediated PPIs.
Collapse
Affiliation(s)
- Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rosa Bellavita
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alan Gerber
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nina-Louisa Efrém
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Thirza van Ramshorst
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nicholas M Pearce
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Paul R J Davey
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Isabel Everard
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Wu L, Su L, Deng M, Hong X, Wu M, Zhang M, Bouveret E, Yan X. Dual-fluorescent bacterial two-hybrid system for quantitative Protein-Protein interaction measurement via flow cytometry. Talanta 2021; 233:122549. [PMID: 34215052 DOI: 10.1016/j.talanta.2021.122549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/28/2022]
Abstract
Characterization of protein-protein interactions (PPIs) is essential for understanding cellular signal transduction pathways. However, quantitative measurement of the binding strength remains challenging. Building upon the classical bacterial adenylate cyclase two-hybrid (BACTH) system, we previously demonstrated that the relative reporter protein expression (RRPE), defined as the level of reporter expression normalized to that of the interacting protein, is an intrinsic characteristic associated with the binding strength between the two interacting proteins. In this study, we inserted fluorescent protein tdTomato in the chromosome as the reporter protein by CRISPR/Cas9 technology and employed a 12-amino acid tetracysteine (TC) to tag one of the interacting proteins, which can be further labeled by a membrane-permeable biarsenical dye. The combined use of tdTomato and TC-tag offers rapid and high-throughput analysis of the expression levels of both the reporter protein and one of the interacting proteins at the single-cell level by multicolor flow cytometry, which simplifies the quantitative measurement of PPI. The use of the as-developed RRPE-tdTomato-TC-BACTH approach was demonstrated in three demanding applications. First, binding affinities could be correctly ranked for discriminating interaction strengths with a tenfold difference or of the same order of magnitude. We demonstrate that the method is sensitive enough to discriminate affinities with a small difference of 1.4-fold. Moreover, residues involved in PPI can be easily mapped and ranked. Lastly, protein interaction inhibitors can be rapidly screened.
Collapse
Affiliation(s)
- Lina Wu
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China.
| | - Liuqin Su
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Minfang Deng
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Xinyi Hong
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Mingkai Wu
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Miaomiao Zhang
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | | | - Xiaomei Yan
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China.
| |
Collapse
|
28
|
Wendt M, Bellavita R, Gerber A, Efrém N, Ramshorst T, Pearce NM, Davey PRJ, Everard I, Vazquez‐Chantada M, Chiarparin E, Grieco P, Hennig S, Grossmann TN. Bicyclic β‐Sheet Mimetics that Target the Transcriptional Coactivator β‐Catenin and Inhibit Wnt Signaling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Rosa Bellavita
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Alan Gerber
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Nina‐Louisa Efrém
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Thirza Ramshorst
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Nicholas M. Pearce
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | | | - Isabel Everard
- Mechanistic Biology and Profiling Discovery Sciences, R&D AstraZeneca Cambridge UK
| | | | | | - Paolo Grieco
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| |
Collapse
|
29
|
Tonali N, Hericks L, Schröder DC, Kracker O, Krzemieniecki R, Kaffy J, Le Joncour V, Laakkonen P, Marion A, Ongeri S, Dodero VI, Sewald N. Peptidotriazolamers Inhibit Aβ(1-42) Oligomerization and Cross a Blood-Brain-Barrier Model. Chempluschem 2021; 86:840-851. [PMID: 33905181 DOI: 10.1002/cplu.202000814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/07/2021] [Indexed: 12/25/2022]
Abstract
In peptidotriazolamers every second peptide bond is replaced by a 1H-1,2,3-triazole. Such foldamers are expected to bridge the gap in molecular weight between small-molecule drugs and protein-based drugs. Amyloid β (Aβ) aggregates play an important role in Alzheimer's disease. We studied the impact of amide bond replacements by 1,4-disubstituted 1H-1,2,3-triazoles on the inhibitory activity of the aggregation "hot spots" K16 LVFF20 and G39 VVIA42 in Aβ(1-42). We found that peptidotriazolamers act as modulators of the Aβ(1-42) oligomerization. Some peptidotriazolamers are able to interfere with the formation of toxic early Aβ oligomers, depending on the position of the triazoles, which is also supported by computational studies. Preliminary in vitro results demonstrate that a highly active peptidotriazolamer is also able to cross the blood-brain-barrier.
Collapse
Affiliation(s)
- Nicolo Tonali
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany.,BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Loreen Hericks
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - David C Schröder
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Oliver Kracker
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Radosław Krzemieniecki
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Julia Kaffy
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Vadim Le Joncour
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Pirjo Laakkonen
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Veronica I Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| |
Collapse
|
30
|
Laxio Arenas J, Xu Y, Milcent T, Van Heijenoort C, Giraud F, Ha-Duong T, Crousse B, Ongeri S. Fluorinated Triazole Foldamers: Folded or Extended Conformational Preferences. Chempluschem 2021; 86:241-251. [PMID: 33555641 DOI: 10.1002/cplu.202000791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 12/16/2022]
Abstract
The Ministère de l'Enseignement Supérieur et de la Recherche (MESR) is thanked for financial support for José Laxio Arenas. The China Scholarship Council is thanked for financial support for Yaochun Xu. The authors thank Pr. Vadim Soloshonok and TOSOH F-TECH, Inc. for the kind gift of N-terbutyl-sulfinylimine.
Collapse
Affiliation(s)
- José Laxio Arenas
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Yaochun Xu
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Thierry Milcent
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Carine Van Heijenoort
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN, CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190, Gif sur Yvette, France
| | - François Giraud
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN, CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190, Gif sur Yvette, France
| | - Tap Ha-Duong
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Benoit Crousse
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| |
Collapse
|
31
|
Tonali N, Nencetti S, Orlandini E, Ciccone L. Application of PROTAC strategy to TTR-Aβ protein-protein interaction for the development of Alzheimer's disease drugs. Neural Regen Res 2021; 16:1554-1555. [PMID: 33433479 PMCID: PMC8323684 DOI: 10.4103/1673-5374.303017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Nicoló Tonali
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | | | - Elisabetta Orlandini
- Department of Earth Sciences, Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Ciccone L, Shi C, di Lorenzo D, Van Baelen AC, Tonali N. The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020; 25:E2439. [PMID: 32456156 PMCID: PMC7288020 DOI: 10.3390/molecules25102439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Chenghui Shi
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Davide di Lorenzo
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Anne-Cécile Van Baelen
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris Saclay, SIMoS, 91191 Gif-sur-Yvette, France;
| | - Nicolo Tonali
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| |
Collapse
|
33
|
Tonali N, Correia I, Lesma J, Bernadat G, Ongeri S, Lequin O. Introducing sequential aza-amino acids units induces repeated β-turns and helical conformations in peptides. Org Biomol Chem 2020; 18:3452-3458. [PMID: 32091060 DOI: 10.1039/c9ob02654a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A major current issue in medicinal chemistry is the design of small peptide analogues resistant to proteolysis and able to adopt preferential conformations, while preserving the selectivity and efficiency of natural peptides. Whereas the introduction of one aza-Gly in peptides has proven numerous biological and structural interest, the conformational effect of sequential aza-Gly or aza-amino acids bearing side chains has not been investigated. In this work, experimental NMR and X-ray data together with in silico conformational studies reveal that the introduction of two consecutive aza-amino acids in pseudotripeptides induces the formation of stable hydrogen-bonded β-turn structures. Notably, this stabilization effect relies on the presence of side chains on aza-amino acids, as more flexible conformations are observed with aza-Gly residues. Remarkably, a longer aza/aza/α/aza/aza/α pseudohexapeptide containing substituted aza-amino acids adopts repeated β-turns conformations which interconvert with a fully helical structure mimicking a 310 helix.
Collapse
Affiliation(s)
- Nicolo Tonali
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.
| | | | | | | | | | | |
Collapse
|