1
|
Bešić E, Rajić Z, Šakić D. Advancements in electron paramagnetic resonance (EPR) spectroscopy: A comprehensive tool for pharmaceutical research. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024:acph-2024-0037. [PMID: 39686630 DOI: 10.2478/acph-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has long been established across various scientific disciplines for characterizing organic radicals, organometallic complexes, protein structures and dynamics, polymerization processes, and radical degradation phenomena. Despite its extensive utility in these areas, EPR spectroscopy's application within pharmaceutical science has historically been constrained, primarily due to factors such as high equipment costs, a steep learning curve, complex spectral deconvolution and analysis, and a traditional lack of emphasis on single-electron chemistry in pharmaceutical research. This review aims to provide a thorough examination of EPR spectroscopy's applications in analyzing a wide array of para-magnetic species relevant to pharmaceutical research. We detail how EPR spectroscopy can be employed to assess free radical scavenging properties in pharmaceutical compounds, elucidate drug mechanisms of action, and explore pharmacokinetics. Additionally, we investigate the role of free radicals in drug-induced toxicity and drug-membrane interactions, while also covering the application of EPR spectroscopy in drug delivery research, advanced studies of metallodrugs, and monitoring of oxygen levels in biological systems through EPR oximetry. The recent advancements in the miniaturization of EPR spectro meters have paved the way for their application in on-site and in-line mo nitoring during the manufacturing process and quality control of pharmaceutical substances and final drug formulations due to being the only direct and non-invasive detection technique for radical detection. Through these discussions, we highlight the substantial contributions of EPR spectroscopy to the advancement of pharmaceutical sciences.
Collapse
Affiliation(s)
- Erim Bešić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Davor Šakić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Facchetti D, Dang Y, Seif-Eddine M, Geoghegan BL, Roessler MM. Film-electrochemical EPR spectroscopy to investigate electron transfer in membrane proteins in their native environment. Chem Commun (Camb) 2024; 60:12690-12693. [PMID: 39348210 DOI: 10.1039/d4cc04013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Film-electrochemical electron paramagnetic resonance spectroscopy (FE-EPR) enables simultaneous electrochemical and spectroscopic characterisation of paramagnetic electron-transfer centres, including in soluble proteins. We now report a modified set-up FE-EPR with tuneable macroporous working electrodes and demonstrate the feasibility to investigate electron transfer in membrane proteins in their native membrane environment.
Collapse
Affiliation(s)
- Davide Facchetti
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR), Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Yunfei Dang
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR), Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Maryam Seif-Eddine
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR), Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
- CNRS: Marseille, Bioénergétique et Ingénierie des Protéines (BIP), 31 Chemin Joseph Aiguier, 13009, Marseille, France.
| | - Blaise L Geoghegan
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR), Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Maxie M Roessler
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR), Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| |
Collapse
|
3
|
Eisermann J, Liang Y, Wright JJ, Clifford E, Wilton-Ely JDET, Kuimova MK, Roessler MM. The Effect of Reactive Oxygen Species on Respiratory Complex I Activity in Liposomes. Chemistry 2024; 30:e202402035. [PMID: 39058376 DOI: 10.1002/chem.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Respiratory complex I (R-CI) is an essential enzyme in the mitochondrial electron transport chain but also a major source of reactive oxygen species (ROS), which are implicated in neurodegenerative diseases and ageing. While the mechanism of ROS production by R-CI is well-established, the feedback of ROS on R-CI activity is poorly understood. Here, we perform EPR spectroscopy on R-CI incorporated in artificial membrane vesicles to reveal that ROS (particularly hydroxyl radicals) reduce R-CI activity by making the membrane more polar and by increasing its hydrogen bonding capability. Moreover, the mechanism that we have uncovered reveals that the feedback of ROS on R-CI activity via the membrane is transient and not permanent; lipid peroxidation is negligible for the levels of ROS generated under these conditions. Our successful use of modular proteoliposome systems in conjunction with EPR spectroscopy and other biophysical techniques is a powerful approach for investigating ROS effects on other membrane proteins.
Collapse
Affiliation(s)
- Jana Eisermann
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
- Department of Chemistry, University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Yuxin Liang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Eleanor Clifford
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
4
|
Bendou O, Bueno-Ramos N, Marcos-Barbero EL, Morcuende R, Arellano JB. Singlet Oxygen and Superoxide Anion Radical Detection by EPR Spin Trapping in Thylakoid Preparations. Methods Mol Biol 2024; 2798:11-26. [PMID: 38587733 DOI: 10.1007/978-1-0716-3826-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Reactive oxygen species (ROS) are produced by energy transfer and electron transport in plant chloroplast thylakoids at non-toxic levels under normal growth conditions, but at threatening levels under adverse or fluctuating environmental conditions. Among chloroplast ROS, singlet oxygen and superoxide anion radical, respectively, produced by photosystem II (PSII) and PSI, are known to be the major ROS under several stress conditions. Both are very unlikely to diffuse out of chloroplasts, but they are instead capable of triggering ROS-mediated chloroplast operational retrograde signalling to activate defence gene expression in concert with hormones and other molecular compounds. Therefore, their detection, identification and localization in vivo or in biological preparations is a priority for a deeper understanding of their role in (concurrent) regulation of plant growth and defence responses. Here, we present two EPR spin traps, abbreviated as TEMPD-HCl and DEPMPO, to detect and identify ROS in complex systems, such as isolated thylakoids, together with some hints and cautions to perform reliable spin trapping experiments.
Collapse
Affiliation(s)
- Ouardia Bendou
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Nara Bueno-Ramos
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Emilio L Marcos-Barbero
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Rosa Morcuende
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Juan B Arellano
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain.
| |
Collapse
|
5
|
Sidabras JW, Stripp ST. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 2023; 28:355-378. [PMID: 36856864 DOI: 10.1007/s00775-023-01992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.
Collapse
Affiliation(s)
- Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA, 53226.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
6
|
Vieira EG, Fazzi RB, Martins DOTA, Sheveleva AM, Tuna F, da Costa Ferreira AM. A new strategy for improving cytotoxicity of a copper complex toward metastatic melanoma cells unveiled by EPR spectroscopy †. RSC Adv 2023; 13:9715-9719. [PMID: 36968063 PMCID: PMC10038224 DOI: 10.1039/d2ra07266a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
A novel strategy of improving cytotoxicity against metastatic melanoma cells using an oxindolimine copper(ii) complex immobilized and dimerized on a modified Polyhedral Oligomeric Silsesquioxane (POSS) matrix was developed, as revealed by electron paramagnetic resonance (EPR) spectroscopy. An assured correlation between continuous-wave (CW) and pulsed EPR spectroscopies provided a complete characterization of the actual active species, its coordination environment, as well as the efficiency/selectivity of the bioconjugate materials. An oxindolimine-copper(ii) complex with antitumor properties was immobilized in a silica matrix, and verified to be more active and selective due the formation of a dinuclear species, unveiled by continuous wave and pulsed EPR spectroscopy.![]()
Collapse
Affiliation(s)
- Eduardo Guimarães Vieira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo05508-000 São Paulo-SPBrazil
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of ManchesterManchester M13 9PLUK
| | - Rodrigo Boni Fazzi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo05508-000 São Paulo-SPBrazil
| | - Daniel O. T. A. Martins
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of ManchesterManchester M13 9PLUK
| | - Alena M. Sheveleva
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of ManchesterManchester M13 9PLUK
| | - Floriana Tuna
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of ManchesterManchester M13 9PLUK
| | - Ana Maria da Costa Ferreira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo05508-000 São Paulo-SPBrazil
| |
Collapse
|
7
|
Abhyankar N, Agrawal A, Campbell J, Maly T, Shrestha P, Szalai V. Recent advances in microresonators and supporting instrumentation for electron paramagnetic resonance spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:101101. [PMID: 36319314 PMCID: PMC9632321 DOI: 10.1063/5.0097853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy characterizes the magnetic properties of paramagnetic materials at the atomic and molecular levels. Resonators are an enabling technology of EPR spectroscopy. Microresonators, which are miniaturized versions of resonators, have advanced inductive-detection EPR spectroscopy of mass-limited samples. Here, we provide our perspective of the benefits and challenges associated with microresonator use for EPR spectroscopy. To begin, we classify the application space for microresonators and present the conceptual foundation for analysis of resonator sensitivity. We summarize previous work and provide insight into the design and fabrication of microresonators as well as detail the requirements and challenges that arise in incorporating microresonators into EPR spectrometer systems. Finally, we provide our perspective on current challenges and prospective fruitful directions.
Collapse
Affiliation(s)
| | - Amit Agrawal
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jason Campbell
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Thorsten Maly
- Bridge12 Technologies, Inc., Natick, Massachusetts 01760, USA
| | | | - Veronika Szalai
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|