1
|
Lorrain-Soligon L, Boudard L, Sebastiano M, Costantini D, Angelier F, Ribout C, Leclerc M, Kato A, Robin F, Brischoux F. Salty surprises: Developmental and behavioral responses to environmental salinity reveal higher tolerance of inland rather than coastal Bufo spinosus tadpoles. ENVIRONMENTAL RESEARCH 2025; 264:120401. [PMID: 39571705 DOI: 10.1016/j.envres.2024.120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Salinization is predicted to intensify due to climate change, impacting biodiversity and ecosystem functioning. Amphibians, particularly embryos and larvae, are highly susceptible to environmental salinity. Yet, local adaptation may cause differing vulnerabilities between coastal and inland populations. In this study, we investigated the physiological, behavioural, and life-history responses to environmental salinity (0, 2 and 4 g l-1) of embryos and larvae of a widespread amphibian species (spined toad, Bufo spinosus) from salt-exposed (coastal) and salt-free (inland) populations. Moderate salinity (4 g l-1) altered embryonic and larval development in both populations, causing increased malformations, decreased body size and survival, and altered behavior, but did not affect telomere length or oxidative status. Individuals exposed to low salinity (2 g l-1) performed better across most traits. However, moderate salinity had stronger negative effects on coastal individuals, indicating a lack of local adaptation and overall lower performance compared to their inland counterparts. These findings suggest that increasing salinity will have varied impacts on organisms depending on their population origins and developmental stages.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France; Sorbonne Université, UMR 7619 METIS, Paris, France.
| | - Loïz Boudard
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| | - Manrico Sebastiano
- UPMA, Muséum National d'Histoire Naturelle, CNRS, Paris, France; Behavioral Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein, Wilrijk, Belgium
| | - David Costantini
- UPMA, Muséum National d'Histoire Naturelle, CNRS, Paris, France; Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| | - Margot Leclerc
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| | | | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| |
Collapse
|
2
|
Frydrychová RČ, Konopová B, Peska V, Brejcha M, Sábová M. Telomeres and telomerase: active but complex players in life-history decisions. Biogerontology 2024; 25:205-226. [PMID: 37610666 DOI: 10.1007/s10522-023-10060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.
Collapse
Affiliation(s)
- Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic.
| | - Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Miloslav Brejcha
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Michala Sábová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
3
|
Wolf SE, Woodruff MJ, Chang van Oordt DA, Clotfelter ED, Cristol DA, Derryberry EP, Ferguson SM, Stanback MT, Taff CC, Vitousek MN, Westneat DF, Rosvall KA. Among-population variation in telomere regulatory proteins and their potential role as hidden drivers of intraspecific variation in life history. J Anim Ecol 2024. [PMID: 38509838 DOI: 10.1111/1365-2656.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024]
Abstract
Biologists aim to explain patterns of growth, reproduction and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere's most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work. Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using the blood gene expression of four shelterin proteins in 12-day-old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history. Shelterin protein gene expression differed among populations and tracked non-linear variation in latitude: nestlings from mid-latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude. We next assessed whether telomere length and shelterin protein gene expression correlate with 12-day-old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length. These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution and telomere biology, which together will advance understanding of the drivers of life history variation in nature.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mary J Woodruff
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David A Chang van Oordt
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Cornell Lab of Ornithology, Ithaca, New York, USA
| | | | - Daniel A Cristol
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Stephen M Ferguson
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Biology, University of Richmond, Richmond, Virginia, USA
| | - Mark T Stanback
- Department of Biology, Davidson College, Davidson, North Carolina, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Cornell Lab of Ornithology, Ithaca, New York, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Cornell Lab of Ornithology, Ithaca, New York, USA
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
4
|
Hansson A, Wapstra E, While GM, Olsson M. Sex and early-life conditions shape telomere dynamics in an ectotherm. J Exp Biol 2024; 227:jeb246512. [PMID: 38230426 PMCID: PMC10912812 DOI: 10.1242/jeb.246512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Telomeres, the repetitive DNA regions that protect the ends of chromosomes, and their shortening have been linked to key life history trade-offs among growth, reproduction and lifespan. In contrast to most endotherms, many ectotherms can compensate for telomere shortening throughout life by upregulation of telomerase in somatic tissues. However, during development, marked by rapid growth and an increased sensitivity to extrinsic factors, the upregulation of telomerase may be overwhelmed, resulting in long-term impacts on telomere dynamics. In ectotherms, one extrinsic factor that may play a particularly important role in development is temperature. Here, we investigated the influence of developmental temperature and sex on early-life telomere dynamics in an oviparous ectotherm, Lacerta agilis. While there was no effect of developmental temperature on telomere length at hatching, there were subsequent effects on telomere maintenance capacity, with individuals incubated at warm temperatures exhibiting less telomere maintenance compared with cool-incubated individuals. Telomere dynamics were also sexually dimorphic, with females having longer telomeres and greater telomere maintenance compared with males. We suggest that selection drives this sexual dimorphism in telomere maintenance, in which females maximise their lifetime reproductive success by investing in traits promoting longevity such as maintenance, while males invest in short-term reproductive gains through a polygynous mating behaviour. These early-life effects, therefore, have the potential to mediate life-long changes to life histories.
Collapse
Affiliation(s)
- Alexander Hansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Gothenburg, Sweden
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Geoffrey M. While
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
5
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. Biological clocks as age estimation markers in animals: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2023; 98:1972-2011. [PMID: 37356823 DOI: 10.1111/brv.12992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Various biological attributes associated with individual fitness in animals change predictably over the lifespan of an organism. Therefore, the study of animal ecology and the work of conservationists frequently relies upon the ability to assign animals to functionally relevant age classes to model population fitness. Several approaches have been applied to determining individual age and, while these methods have proved useful, they are not without limitations and often lack standardisation or are only applicable to specific species. For these reasons, scientists have explored the potential use of biological clocks towards creating a universal age-determination method. Two biological clocks, tooth layer annulation and otolith layering have found universal appeal. Both methods are highly invasive and most appropriate for post-mortem age-at-death estimation. More recently, attributes of cellular ageing previously explored in humans have been adapted to studying ageing in animals for the use of less-invasive molecular methods for determining age. Here, we review two such methods, assessment of methylation and telomere length, describing (i) what they are, (ii) how they change with age, and providing (iii) a summary and meta-analysis of studies that have explored their utility in animal age determination. We found that both attributes have been studied across multiple vertebrate classes, however, telomere studies were used before methylation studies and telomere length has been modelled in nearly twice as many studies. Telomere length studies included in the review often related changes to stress responses and illustrated that telomere length is sensitive to environmental and social stressors and, in the absence of repair mechanisms such as telomerase or alternative lengthening modes, lacks the ability to recover. Methylation studies, however, while also detecting sensitivity to stressors and toxins, illustrated the ability to recover from such stresses after a period of accelerated ageing, likely due to constitutive expression or reactivation of repair enzymes such as DNA methyl transferases. We also found that both studied attributes have parentally heritable features, but the mode of inheritance differs among taxa and may relate to heterogamy. Our meta-analysis included more than 40 species in common for methylation and telomere length, although both analyses included at least 60 age-estimation models. We found that methylation outperforms telomere length in terms of predictive power evidenced from effect sizes (more than double that observed for telomeres) and smaller prediction intervals. Both methods produced age correlation models using similar sample sizes and were able to classify individuals into young, middle, or old age classes with high accuracy. Our review and meta-analysis illustrate that both methods are well suited to studying age in animals and do not suffer significantly from variation due to differences in the lifespan of the species, genome size, karyotype, or tissue type but rather that quantitative method, patterns of inheritance, and environmental factors should be the main considerations. Thus, provided that complex factors affecting the measured trait can be accounted for, both methylation and telomere length are promising targets to develop as biomarkers for age determination in animals.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
6
|
Friesen CR, Wapstra E, Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol Ecol 2022; 31:6069-6086. [PMID: 34448287 DOI: 10.1111/mec.16154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ectotherms are classic models for understanding life-history tradeoffs, including the reproduction-somatic maintenance tradeoffs that may be reflected in telomere length and their dynamics. Importantly, life-history traits of ectotherms are tightly linked to their thermal environment, with diverse or synergistic mechanistic explanations underpinning the variation. Telomere dynamics potentially provide a mechanistic link that can be used to monitor thermal effects on individuals in response to climatic perturbations. Growth rate, age and developmental stage are all affected by temperature, which interacts with telomere dynamics in complex and intriguing ways. The physiological processes underpinning telomere dynamics can be visualized and understood using thermal performance curves (TPCs). TPCs reflect the evolutionary history and the thermal environment during an individual's ontogeny. Telomere maintenance should be enhanced at or near the thermal performance optimum of a species, population and individual. The thermal sensitivity of telomere dynamics should reflect the interacting TPCs of the processes underlying them. The key processes directly underpinning telomere dynamics are mitochondrial function (reactive oxygen production), antioxidant activity, telomerase activity and telomere endcap protein status. We argue that identifying TPCs for these processes will significantly help design robust, repeatable experiments and field studies of telomere dynamics in ectotherms. Conceptually, TPCs are a valuable framework to predict and interpret taxon- and population-specific telomere dynamics across thermal regimes. The literature of thermal effects on telomeres in ectotherms is sparse and mostly limited to vertebrates, but our conclusions and recommendations are relevant across ectothermic animals.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Reichard M, Giannetti K, Ferreira T, Maouche A, Vrtílek M, Polačik M, Blažek R, Ferreira MG. Lifespan and telomere length variation across populations of wild-derived African killifish. Mol Ecol 2022; 31:5979-5992. [PMID: 34826177 DOI: 10.1111/mec.16287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 01/31/2023]
Abstract
Telomeres and telomerase prevent the continuous erosion of chromosome-ends caused by lifelong cell division. Shortened telomeres are associated with age-related pathologies. While short telomere length is positively correlated with increased lethality at the individual level, in comparisons across species short telomeres are associated with long (and not short) lifespans. Here, we tested this contradiction between individual and evolutionary patterns in telomere length using African annual killifish. We analysed lifespan and telomere length in a set of captive strains derived from well-defined wild populations of Nothobranchius furzeri and its sister species, N. kadleci, from sites along a strong gradient of aridity which ultimately determines maximum natural lifespan. Overall, males were shorter-lived than females, and also had shorter telomeres. Male lifespan (measured in controlled laboratory conditions) was positively associated with the amount of annual rainfall in the site of strain origin. However, fish from wetter climates had shorter telomeres. In addition, individual fish which grew largest over the juvenile period possessed shorter telomeres at the onset of adulthood. This demonstrates that individual condition and environmentally-driven selection indeed modulate the relationship between telomere length and lifespan in opposite directions, validating the existence of inverse trends within a single taxon. Intraindividual heterogeneity of telomere length (capable to detect very short telomeres) was not associated with mean telomere length, suggesting that the shortest telomeres are controlled by regulatory pathways other than those that determine mean telomere length. The substantial variation in telomere length between strains from different environments identifies killifish as a powerful system in understanding the adaptive value of telomere length.
Collapse
Affiliation(s)
- Martin Reichard
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | - Ahmed Maouche
- Institute for Research on Cancer and Aging of Nice (IRCAN), UMR7284 U1081 Université Côte d'Azur, Nice, France
| | - Milan Vrtílek
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Matej Polačik
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Radim Blažek
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Miguel Godinho Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Institute for Research on Cancer and Aging of Nice (IRCAN), UMR7284 U1081 Université Côte d'Azur, Nice, France
| |
Collapse
|
8
|
Ensminger DC, Siegel SR, Owen DAS, Sheriff MJ, Langkilde T. Elevated glucocorticoids during gestation suggest sex-specific effects on offspring telomere lengths in a wild lizard. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110971. [PMID: 33933630 DOI: 10.1016/j.cbpa.2021.110971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
The effects of maternal glucocorticoids (e.g. corticosterone, CORT) on offspring interest biologists due to increasing environmental perturbations. While little is known about the impact of maternal CORT on offspring fitness, it may modulate telomere length and compromise offspring health. Here, we use a modified real-time quantitative PCR assay to assess telomere length using small DNA quantities (<60 ng). We tested the hypothesis that increased maternal CORT during gestation decreases offspring telomere length. While CORT-driven telomere shortening is well established within individuals, cross-generational effects remain unclear. We treated wild-caught gravid female eastern fence lizards (Sceloporus undulatus) with daily transdermal applications of CORT, at ecologically relevant levels, from capture to laying. Maternal CORT treatment did not alter maternal telomere length, although baseline maternal CORT concentrations had a weak, negative correlation with maternal telomere length. There was no relation between mother and offspring telomere length. There was a trend for maternal CORT treatment to shorten telomeres of sons but not daughters. Our treatment replicated exposure to a single stressor per day, likely underestimating effects seen in the wild where stressors may be more frequent. Future research should further explore fitness consequences of maternal CORT effects.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Ecosystem Science and Management, The Pennsylvania State University, Forest Resources Building, University Park, PA 16802, United States of America; Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, United States of America.
| | - Sue R Siegel
- Department of Biobehavioral Health, The Pennsylvania State University, Biomarker Core Lab, University Park, PA 16802, United States of America
| | - Dustin A S Owen
- Department of Ecosystem Science and Management, The Pennsylvania State University, Forest Resources Building, University Park, PA 16802, United States of America; Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, United States of America; Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, United States of America
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, United States of America; Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|