1
|
Kari ZA, Téllez-Isaías G, Khoo MI, Wee W, Kabir MA, Cheadoloh R, Wei LS. Resveratrol impacts on aquatic animals: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:307-318. [PMID: 38376668 DOI: 10.1007/s10695-024-01319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
Aquaculture has intensified tremendously with the increasing demand for protein sources as the global population grows. However, this industry is plagued with major challenges such as poor growth performance, the lack of a proper environment, and immune system impairment, thus creating stress for the aquaculture species and risking disease outbreaks. Currently, prophylactics such as antibiotics, vaccines, prebiotics, probiotics, and phytobiotics are utilized to minimize the negative impacts of high-density farming. One of the promising prophylactic agents incorporated in fish feed is resveratrol, a commercial phytophenol derived via the methanol extraction method. Recent studies have revealed many beneficial effects of resveratrol in aquatic animals. Therefore, this review discusses and summarizes the roles of resveratrol in improving growth performance, flesh quality, immune system, antioxidant capacity, disease resistance, stress mitigation, and potential combination with other prophylactic agents for aquatic animals.
Collapse
Affiliation(s)
- Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | | | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Romalee Cheadoloh
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, 133 Thetsaban 3 Rd, Sateng, Mueang, 95000, Yala Province, Thailand
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| |
Collapse
|
2
|
Mredul MMH, Sokolov EP, Kong H, Sokolova IM. Spawning acts as a metabolic stressor enhanced by hypoxia and independent of sex in a broadcast marine spawner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168419. [PMID: 37979860 DOI: 10.1016/j.scitotenv.2023.168419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
Broadcast spawners, like the blue mussel Mytilus edulis, experience substantial energy expenditure during spawning due to extensive gamete release that can divert energy from other functions. This energetic cost might be intensified by environmental stressors, including hypoxia that suppress aerobic metabolism. However, the energy implications of spawning in marine broadcast spawners have not been well studied. We examined the effects of short-term hypoxia (7 days) and spawning on mitochondrial activity, reactive oxygen species (ROS) production, and cellular energy allocation (ratio of tissue energy reserves to energy demand) in somatic tissues of M. edulis. Under normoxic conditions, post-spawning (72 h) recovery correlated with increased phosphorylation (OXPHOS) rate in mitochondria from the digestive gland, while hypoxia inhibited this response. Regardless of oxygen levels, mitochondrial ROS production decreased after spawning, indicating M. edulis' ability to prevent oxidative stress. Spawning led to reduced energy reserves in somatic tissues (the gills and the digestive gland), highlighting significant energy cost of spawning primarily fueled by lipid and protein breakdown. Additionally, cellular energy allocation dropped 3 h post-spawning, indicating a shift in energy demand and supply. Normoxic conditions allowed recovery in 72 h, but hypoxia hindered recuperation. These findings underscore spawning's bioenergetic challenge for broadcast spawners like M. edulis, potentially elevating post-spawning mortality risk, especially in hypoxic coastal habitats.
Collapse
Affiliation(s)
- Md Mahamudul Hasan Mredul
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research Rostock, Warnemünde, Germany
| | - Hui Kong
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
3
|
Bridier G, Olivier F, Grall J, Chauvaud L, Sejr MK, Tremblay R. Seasonal lipid dynamics of four Arctic bivalves: Implications for their physiological capacities to cope with future changes in coastal ecosystems. Ecol Evol 2023; 13:e10691. [PMID: 37928200 PMCID: PMC10620577 DOI: 10.1002/ece3.10691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
The Arctic is exposed to unprecedented warming, at least three times higher than the global average, which induces significant melting of the cryosphere. Freshwater inputs from melting glaciers will subsequently affect coastal primary production and organic matter quality. However, due to a lack of basic knowledge on the physiology of Arctic organisms, it remains difficult to understand how these future trophic changes will threaten the long-term survival of benthic species in coastal habitats. This study aimed to gain new insights into the seasonal lipid dynamics of four dominant benthic bivalves (Astarte moerchi, Hiatella arctica, Musculus discors, and Mya truncata) collected before and after sea ice break-up in a high-Arctic fjord (Young Sound, NE Greenland). Total lipid content and fatty acid composition of digestive gland neutral lipids were analyzed to assess bivalve energy reserves while the fatty acid composition of gill polar lipids was determined as a biochemical indicator of interspecies variations in metabolic activity and temperature acclimation. Results showed a decrease in lipid reserves between May and August, suggesting that bivalves have only limited access to fresh organic matter until sea ice break-up. The lack of seasonal variation in the fatty acid composition of neutral lipids, especially essential ω3 fatty acids, indicates that no fatty acid transfer from the digestive glands to the gonads occurs between May and August, and therefore, no reproductive investment takes place during this period. Large interspecies differences in gill fatty acid composition were observed, which appear to be related to differences in species life span and metabolic strategies. Such differences in gill fatty acid composition of polar lipids, which generally influence metabolic rates and energy needs, may imply that not all benthic species will be equally sensitive to future changes in primary production and organic matter quality in Arctic coastal habitats.
Collapse
Affiliation(s)
- Guillaume Bridier
- Institut des Sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiQuebecCanada
| | - Frédéric Olivier
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) UMR 8067 MNHN, CNRS, SU, IRD 207, UCN, UAParisFrance
| | - Jacques Grall
- Laboratoire des Sciences de l'Environnement Marin (LEMAR) UMR 6539 UBO, CNRS, IRD, IfremerPlouzanéFrance
- Observatoire Marin de l'Institut Universitaire Européen de la Mer UMS 3113, Université de Bretagne OccidentalePlouzanéFrance
| | - Laurent Chauvaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR) UMR 6539 UBO, CNRS, IRD, IfremerPlouzanéFrance
| | - Mikael K. Sejr
- Arctic Research Centre and EcoscienceAarhus UniversityAarhus CDenmark
| | - Réjean Tremblay
- Institut des Sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiQuebecCanada
| |
Collapse
|
4
|
Hsieh S, Łaska W, Uchman A. Intermittent and temporally variable bioturbation by some terrestrial invertebrates: implications for ichnology. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:11. [PMID: 36881175 PMCID: PMC9992032 DOI: 10.1007/s00114-023-01833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 03/08/2023]
Abstract
Bedding planes and vertical sections of many sedimentary rock formations reveal bioturbation structures, including burrows, produced by diverse animal taxa at different rates and durations. These variables are not directly measurable in the fossil record, but neoichnological observations and experiments provide informative analogues. Comparable to marine invertebrates from many phyla, a captive beetle larva burrowing over 2 weeks showed high rates of sediment disturbance within the first 100 h but slower rates afterwards. Tunnelling by earthworms and adult dung beetles is also inconstant-displacement of lithic material alternates with organic matter displacement, often driven by food availability with more locomotion when hungry. High rates of bioturbation, as with locomotion generally, result from internal and external drives, slowing down or stopping when needs are filled. Like other processes affecting sediment deposition and erosion, rates can drastically differ based on measured timescale, with short bursts of activity followed by hiatuses, concentrated in various seasons and ontogenetic stages for particular species. Assumptions of constant velocities within movement paths, left as traces afterward, may not apply in many cases. Arguments about energetic efficiency or optimal foraging based on ichnofossils have often overlooked these and related issues. Single bioturbation rates from short-term experiments in captivity may not be comparable to rates measured at an ecosystem level over a year or generalized across multiple time scales where conditions differ even for the same species. Neoichnological work, with an understanding of lifetime variabilities in bioturbation and their drivers, helps connect ichnology with behavioural biology and movement ecology.
Collapse
Affiliation(s)
- Shannon Hsieh
- Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387, Kraków, Poland.
| | - Weronika Łaska
- Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387, Kraków, Poland.,Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, 101, 02-089, Żwirki i Wigury, Poland
| | - Alfred Uchman
- Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387, Kraków, Poland
| |
Collapse
|
5
|
Ouillon N, Forster S, Timm S, Jarrett A, Otto S, Rehder G, Sokolova IM. Effects of different oxygen regimes on ecological performance and bioenergetics of a coastal marine bioturbator, the soft shell clam Mya arenaria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160459. [PMID: 36435244 DOI: 10.1016/j.scitotenv.2022.160459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Benthic species are exposed to oxygen fluctuations that can affect their performance and survival. Physiological effects and ecological consequences of fluctuating oxygen are not well understood in marine bioturbators such as the soft-shell clam Mya arenaria. We explored the effects of different oxygen regimes (21 days of exposure to constant hypoxia (~4.1 kPa PO2), cyclic hypoxia (~2.1-~10.4 kPa PO2) or normoxia (~21 kPa PO2)) on energy metabolism, oxidative stress and ecological behaviors (bioirrigation and bioturbation) of M. arenaria. Constant hypoxia and post-hypoxic recovery in cyclic hypoxia led to oxidative injury of proteins and lipids, respectively. Clams acclimated to constant hypoxia maintained aerobic capacity similar to the normoxic clams. In contrast, clams acclimated to cyclic hypoxia suppressed aerobic metabolism and activated anaerobiosis during hypoxia, and strongly upregulated aerobic metabolism during recovery. Constant hypoxia led to decreased lipid content, whereas in cyclic hypoxia proteins and glycogen accumulated during recovery and were broken down during the hypoxic phase. Digging of clams was impaired by constant and cyclic hypoxia, and bioirrigation was also suppressed under constant hypoxia. Overall, cyclic hypoxia appears less stressful for M. arenaria due to the metabolic flexibility that ensures recovery during reoxygenation and mitigates the negative effects of hypoxia, whereas constant hypoxia leads to depletion of energy reserves and impairs ecological functions of M. arenaria potentially leading to negative ecological consequences in benthic ecosystems.
Collapse
Affiliation(s)
- Natascha Ouillon
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany
| | - Stefan Forster
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Stefan Timm
- Department of Plant Physiology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany
| | - Abigail Jarrett
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany
| | - Stefan Otto
- Department of Marine Chemistry, Leibniz Institute for Baltic Research, Rostock 18119, Germany
| | - Gregor Rehder
- Department of Marine Chemistry, Leibniz Institute for Baltic Research, Rostock 18119, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
6
|
Shang Y, Wang X, Shi Y, Huang W, Sokolova I, Chang X, Chen D, Wei S, Khan FU, Hu M, Wang Y. Ocean acidificationf affects the bioenergetics of marine mussels as revealed by high-coverage quantitative metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160090. [PMID: 36379341 DOI: 10.1016/j.scitotenv.2022.160090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/14/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Ocean acidification has become a major ecological and environmental problem in the world, whereas the impact mechanism of ocean acidification in marine bivalves is not fully understood. Cellular energy allocation (CEA) approach and high-coverage metabolomic techniques were used to investigate the acidification effects on the energy metabolism of mussels. The thick shell mussels Mytilus coruscus were exposed to seawater pH 8.1 (control) and pH 7.7 (acidification) for 14 days and allowed to recover at pH 8.1 for 7 days. The levels of carbohydrates, lipids and proteins significantly decreased in the digestive glands of the mussels exposed to acidification. The 14-day acidification exposure increased the energy demands of mussels, resulting in increased electron transport system (ETS) activity and decreased cellular energy allocation (CEA). Significant carry-over effects were observed on all cellular energy parameters except the concentration of carbohydrates and cellular energy demand (Ec) after 7 days of recovery. Metabolomic analysis showed that acidification affected the phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and glycine, serine and threonine metabolism. Correlation analysis showed that mussel cell energy parameters (carbohydrates, lipids, proteins, CEA) were negatively/positively correlated with certain differentially abundant metabolites. Overall, the integrated biochemical and metabolomics analyses demonstrated the negative effects of acidification on energy metabolism at the cellular level and implicated the alteration of biosynthesis and metabolism of amino acids as a mechanism of metabolic perturbation caused by acidification in mussels.
Collapse
Affiliation(s)
- Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xinghuo Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Xueqing Chang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Deying Chen
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Fisheries & Aquaculture Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
7
|
Espinoza K, Zapata Vívenes E, Lodeiros C. Parámetros hemocitarios y química de la hemolinfa en reproductores de la concha prieta Anadara tuberculosa (Arcoida: Arcidae). REVISTA PERUANA DE BIOLOGÍA 2022. [DOI: 10.15381/rpb.v29i4.23624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Con motivo de conocer el estado de salud de poblaciones silvestres de la concha prieta Anadara tuberculosa se estudiaron los parámetros hemocitarios (viabilidad, conteo total y diferencial, estabilidad lisosomal, fragilidad osmótica) y la química sanguínea (hemoglobina-Hb, proteínas, triglicéridos, glucosa, lactato deshidrogenasa-LDH y catalasa-CAT). Se extrajo hemolinfa en reproductores salvajes aparentemente sanos colectados en la isla Corazón, río Chone, Ecuador. La viabilidad celular fue elevada, con presencia de 5 morfotipos: eritrocitos (74%), granulocitos traslucidos (6%), amebocitos (3%), hialinocitos (12%), blastocitos (5%). Los hemocitos presentaron membranas lisosomales estables al rojo neutro durante 240 min y una fragilidad osmótica media (FO50) de 4.8‰. Las concentraciones de Hb, proteínas, lípidos y glucosa denotan la función respiratoria y reservas energéticas durante los cambios de marea. La actividad de LDH está vinculada al metabolismo anaeróbico y CAT a la capacidad de mantener el equilibrio redox del sistema inmunitario. Los parámetros hemocitarios y química de la hemolinfa pueden servir como índices fisiológicos normales de referencia en reproductores de A. tuberculosa.
Collapse
|
8
|
Michaud KM, Reed DC, Miller RJ. The Blob marine heatwave transforms California kelp forest ecosystems. Commun Biol 2022; 5:1143. [PMID: 36307673 PMCID: PMC9614761 DOI: 10.1038/s42003-022-04107-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Ocean warming has both direct physiological and indirect ecological consequences for marine organisms. Sessile animals may be particularly vulnerable to anomalous warming given constraints in food acquisition and reproduction imposed by sessility. In temperate reef ecosystems, sessile suspension feeding invertebrates provide food for an array of mobile species and act as a critical trophic link between the plankton and the benthos. Using 14 years of seasonal benthic community data across five coastal reefs, we evaluated how communities of sessile invertebrates in southern California kelp forests responded to the "Blob", a period of anomalously high temperatures and low phytoplankton production. We show that this event had prolonged consequences for kelp forest ecosystems. Changes to community structure, including species invasions, have persisted six years post-Blob, suggesting that a climate-driven shift in California kelp forests is underway.
Collapse
Affiliation(s)
- Kristen M Michaud
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Daniel C Reed
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Robert J Miller
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
9
|
Adzigbli L, Sokolov EP, Ponsuksili S, Sokolova IM. Tissue- and substrate-dependent mitochondrial responses to acute hypoxia-reoxygenation stress in a marine bivalve Crassostrea gigas (Thunberg, 1793). J Exp Biol 2021; 225:273950. [PMID: 34904172 DOI: 10.1242/jeb.243304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
Hypoxia is a major stressor for aquatic organisms, yet intertidal organisms like the oyster Crassostrea gigas are adapted to frequent oxygen fluctuations by metabolically adjusting to shifts in oxygen and substrate availability during hypoxia-reoxygenation (H/R). We investigated the effects of acute H/R stress (15 min at ∼0% O2, and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of C. gigas respiring on different substrates (pyruvate, glutamate, succinate, palmitate and their mixtures). Gill mitochondria showed better capacity for amino acid and fatty acid oxidation compared to the mitochondria from the digestive gland. Mitochondrial responses to H/R stress strongly depended on the substrate and the activity state of mitochondria. In mitochondria oxidizing NADH-linked substrates exposure to H/R stress suppressed oxygen consumption and ROS generation in the resting state, whereas in the ADP-stimulated state, ROS production increased despite little change in respiration. As a result, electron leak (measured as H2O2 to O2 ratio) increased after H/R stress in the ADP-stimulated mitochondria with NADH-linked substrates. In contrast, H/R exposure stimulated succinate-driven respiration without an increase in electron leak. Reverse electron transport (RET) did not significantly contribute to succinate-driven ROS production in oyster mitochondria except for a slight increase in the OXPHOS state during post-hypoxic recovery. A decrease in NADH-driven respiration and ROS production, enhanced capacity for succinate oxidation and resistance to RET might assist in post-hypoxic recovery of oysters mitigating oxidative stress and supporting rapid ATP re-synthesis during oxygen fluctuations such as commonly observed in estuaries and intertidal zones.
Collapse
Affiliation(s)
- Linda Adzigbli
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.,Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Exploring Biophysical Linkages between Coastal Forestry Management Practices and Aquatic Bivalve Contaminant Exposure. TOXICS 2021; 9:toxics9030046. [PMID: 33801358 PMCID: PMC7999571 DOI: 10.3390/toxics9030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/17/2022]
Abstract
Terrestrial land use activities present cross-ecosystem threats to riverine and marine species and processes. Specifically, pesticide runoff can disrupt hormonal, reproductive, and developmental processes in aquatic organisms, yet non-point source pollution is difficult to trace and quantify. In Oregon, U.S.A., state and federal forestry pesticide regulations, designed to meet regulatory water quality requirements, differ in buffer size and pesticide applications. We deployed passive water samplers and collected riverine and estuarine bivalves Margaritifera falcata, Mya arenaria, and Crassostrea gigas from Oregon Coast watersheds to examine forestry-specific pesticide contamination. We used non-metric multidimensional scaling and regression to relate concentrations and types of pesticide contamination across watersheds to ownership and management metrics. In bivalve samples collected from eight coastal watersheds, we measured twelve unique pesticides (two herbicides; three fungicides; and seven insecticides). Pesticides were detected in 38% of bivalve samples; and frequency and maximum concentrations varied by season, species, and watershed with indaziflam (herbicide) the only current-use forestry pesticide detected. Using passive water samplers, we measured four current-use herbicides corresponding with planned herbicide applications; hexazinone and atrazine were most frequently detected. Details about types and levels of exposure provide insight into effectiveness of current forest management practices in controlling transport of forest-use pesticides.
Collapse
|
11
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
12
|
Yusseppone M, Noya Abad T, Risoli M, Sabatini S, Ríos de Molina M, Lomovasky B. Biochemical adaptations of the stout razor clam ( Tagelus plebeius) to changes in oxygen availability: resilience in a changing world? CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Climate change is producing sea level rise and deoxygenation of the ocean, altering estuaries and coastal areas. Changes in oxygen availability are expected to have consequences on the physiological fitness of intertidal species. In this work we analyze the coping response of the intertidal stout razor clam (Tagelus plebeius (Lightfoot, 1786)) to extreme environmental changes in oxygen concentration. Their biochemical responses to normoxia, hypoxia, and hyperoxia transition at different intertidal level (low–high) were measured through an in situ transplant experiment. The high intertidal level negatively affected the analyzed traits of the T. plebeius populations. The differences in reactive oxygen species production, total oxyradical scavenger capacities, and catalase activity also suggested more stressful conditions at the high level where long-term hypoxia periods occur. Both hypoxia and re-oxygenation provoked re-adjustments in the antioxidant responses and higher lipid oxidative damage (normoxia < hypoxia < re-oxygenation). The observed responses in transplanted clams at the opposite intertidal level suggested the potential acclimation of T. plebeius to cope with new environmental conditions. These findings are discussed within a global changing context where both increasing deoxygenation conditions and sea level rise are predicted to be exacerbated in the area driven by climate change.
Collapse
Affiliation(s)
- M.S. Yusseppone
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046 Nivel 1, CC 1260 (7600), Mar del Plata, Argentina
| | - T. Noya Abad
- Centro de Ciencias Naturales, Ambientales y Antropológicas (CCNAA), Universidad Maimónides, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hidalgo 775, C1405BCK, Ciudad Autónoma de Buenos Aires, Argentina
| | - M.C. Risoli
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046 Nivel 1, CC 1260 (7600), Mar del Plata, Argentina
| | - S.E. Sabatini
- Instituto de Química Biológica (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pabellón II, Intendente Guiraldes 2160, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
| | - M.C. Ríos de Molina
- Instituto de Química Biológica (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pabellón II, Intendente Guiraldes 2160, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
| | - B.J. Lomovasky
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046 Nivel 1, CC 1260 (7600), Mar del Plata, Argentina
| |
Collapse
|