1
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Khursheed S, Siddique HR, Tabassum S, Arjmand F. Water soluble transition metal [Ni(II), Cu(II) and Zn(II)] complexes of N-phthaloylglycinate bis(1,2-diaminocyclohexane). DNA binding, pBR322 cleavage and cytotoxicity. Dalton Trans 2022; 51:11713-11729. [PMID: 35852297 DOI: 10.1039/d2dt01312f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To validate the effect of metal ions in analogous ligand scaffolds on DNA binding and cytotoxic response, we have synthesized a series of water-soluble ionic N-phthaloylglycinate conjugated bis(diaminocyclohexane)M2+ complexes where M = Ni(II), Cu(II) and Zn(II) (1-3). The structural characterization of the complexes (1-3) was achieved by spectroscopic {FT-IR, EPR, UV-vis absorption data, 1H NMR, ESI-MS and elemental analysis} and single crystal X-ray diffraction studies, which revealed different topologies for the late 3d-transition metals. The Ni(II) and Zn(II) complexes exhibited an octahedral geometry with coordinated labile water molecules in the P1̄ space group while the Cu(II) complex revealed a square planar geometry with the P21/c space lattice. In vitro DNA-complexation studies were performed employing various complementary biophysical methods to quantify the intrinsic binding constant Kb and Ksv values and to envisage the binding modes and binding affinity of (1-3) at the therapeutic targets. The corroborative results of these experiments revealed a substantial geometric and electronic effect of (1-3) on DNA binding and the following inferences were observed, (i) high Kb and Ksv values, (ii) remarkable cleavage efficiency via an oxidative pathway, (iii) condensation behavior and (iv) good cytotoxic response to HepG2 and PTEN-caP8 cancer cell lines, with copper(II) complex 2 outperforming the other two complexes as a most promising anticancer drug candidate. Copper(II) complexes have been proven in the literature to be good anticancer drug entities, displaying inhibition of uncontrolled-cell growth by multiple pathways viz., anti-angiogenesis, inducing apoptosis and reactive oxygen species mediated cell death phenomena. Nickel(II) and zinc(II) ionic complexes 1 and 3 have also demonstrated good chemotherapeutic potential in vitro and the bioactive 1,2-diaminocyclohexane fragment in these complexes plays an instrumental role in anticancer activity.
Collapse
Affiliation(s)
- Salman Khursheed
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| | - Hifzur R Siddique
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
3
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Yuan S, Zhu Y, Dai Y, Wang Y, Jin D, Liu M, Tang L, Arnesano F, Natile G, Liu Y. 19
F NMR Allows the Investigation of the Fate of Platinum(IV) Prodrugs in Physiological Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siming Yuan
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Yang Zhu
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Yi Dai
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Yu Wang
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Duo Jin
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Manman Liu
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Fabio Arnesano
- Dipartimento di Chimica Università di Bari “A. Moro” via E. Orabona 4 70125 Bari Italy
| | - Giovanni Natile
- Dipartimento di Chimica Università di Bari “A. Moro” via E. Orabona 4 70125 Bari Italy
| | - Yangzhong Liu
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| |
Collapse
|
5
|
Ngoepe MP, Clayton HS. Metal Complexes as DNA Synthesis and/or Repair Inhibitors: Anticancer and Antimicrobial Agents. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1741035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractMedicinal inorganic chemistry involving the utilization of metal-based compounds as therapeutics has become a field showing distinct promise. DNA and RNA are ideal drug targets for therapeutic intervention in the case of various diseases, such as cancer and microbial infection. Metals play a vital role in medicine, with at least 10 metals known to be essential for human life and a further 46 nonessential metals having been involved in drug therapies and diagnosis. These metal-based complexes interact with DNA in various ways, and are often delivered as prodrugs which undergo activation in vivo. Metal complexes cause DNA crosslinking, leading to the inhibition of DNA synthesis and repair. In this review, the various interactions of metal complexes with DNA nucleic acids, as well as the underlying mechanism of action, were highlighted. Furthermore, we also discussed various tools used to investigate the interaction between metal complexes and the DNA. The tools included in vitro techniques such as spectroscopy and electrophoresis, and in silico studies such as protein docking and density-functional theory that are highlighted for preclinical development.
Collapse
Affiliation(s)
| | - Hadley S. Clayton
- Department of Chemistry, University of South Africa, Pretoria, South Africa
| |
Collapse
|
6
|
Yuan S, Zhu Y, Dai Y, Wang Y, Jin D, Liu M, Tang L, Arnesano F, Liu Y, Natile G. 19F NMR Allows to Investigate the Fate of Platinum(IV) Prodrugs in Physiological Conditions. Angew Chem Int Ed Engl 2021; 61:e202114250. [PMID: 34800083 DOI: 10.1002/anie.202114250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/11/2022]
Abstract
Pt(IV) prodrugs can overcome resistance and side effects of conventional Pt(II) anticancer therapies. By 19 F-labeling of a Pt(IV) prodrug (Pt-FBA, FBA = p -fluorobenzoate), the activation under physiological conditions could be investigated. It is found that, unlike single-electron reductants, multi-electron agents can efficiently promote the two electrons reduction of Pt(IV) to Pt(II). Moreover, the activation of Pt-FBA in cell lysate is highly dependent upon the type of cancer cells. When administered to E. coli , Pt-FBA is reduced intracellularly and free FBA can shuttle out of the cell. Interestingly, the reduction rate greatly increases by inducing metallothionein overexpression and is lowered by addition of Zn(II) ions. Finally, when injected into mice, Pt-FBA undergoes fast reduction in the bloodstream accompanied by metabolic degradation of FBA; nevertheless, unreduced Pt-FBA can accumulate to detectable levels in liver and kidneys. The proposed 19 F-NMR approach has the advantage of avoiding the interference of all background signals.
Collapse
Affiliation(s)
- Siming Yuan
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Yang Zhu
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Yi Dai
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Yu Wang
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Duo Jin
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Manman Liu
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Liqin Tang
- University of Science and Technology of China, The First Affiliated Hospital of USTC, CHINA
| | - Fabio Arnesano
- University of Bari: Universita degli Studi di Bari Aldo Moro, Department of Chemistry, ITALY
| | - Yangzhong Liu
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Giovanni Natile
- University of Bari, Department of Chemistry, Via E. Orabona 4, 70125, Bari, ITALY
| |
Collapse
|