1
|
Tan WB, Chng SS. How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry. Annu Rev Microbiol 2024; 78:553-573. [PMID: 39270665 DOI: 10.1146/annurev-micro-032521-014507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| | - Shu-Sin Chng
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| |
Collapse
|
2
|
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024; 13:889. [PMID: 39452760 PMCID: PMC11510100 DOI: 10.3390/pathogens13100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, necessitating immediate actions to develop novel antimicrobial strategies and enforce strong stewardship of existing antibiotics to manage the emergence of drug-resistant strains. This issue is particularly concerning when it comes to Gram-negative bacteria, which possess an almost impenetrable outer membrane (OM) that acts as a formidable barrier to existing antimicrobial compounds. This OM is an asymmetric structure, composed of various components that confer stability, fluidity, and integrity to the bacterial cell. The maintenance and restoration of membrane integrity are regulated by envelope stress response systems (ESRs), which monitor its assembly and detect damages caused by external insults. Bacterial communities encounter a wide range of environmental niches to which they must respond and adapt for survival, sustenance, and virulence. ESRs play crucial roles in coordinating the expression of virulence factors, adaptive physiological behaviors, and antibiotic resistance determinants. Given their role in regulating bacterial cell physiology and maintaining membrane homeostasis, ESRs present promising targets for drug development. Considering numerous studies highlighting the involvement of ESRs in virulence, antibiotic resistance, and alternative resistance mechanisms in pathogens, this review aims to present these systems as potential drug targets, thereby encouraging further research in this direction.
Collapse
Affiliation(s)
| | | | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (R.B.); (P.D.C.); (A.P.)
| | | |
Collapse
|
3
|
Donoso-Piñol P, Briceño G, Evaristo JAM, Nogueira FCS, Schalchli H, Diez MC. Proteome Changes Induced by Iprodione Exposure in the Pesticide-Tolerant Pseudomonas sp. C9 Strain Isolated from a Biopurification System. Int J Mol Sci 2024; 25:10471. [PMID: 39408799 PMCID: PMC11476656 DOI: 10.3390/ijms251910471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Iprodione is a pesticide that belongs to the dicarboximide fungicide family. This pesticide was designed to combat various agronomical pests; however, its use has been restricted due to its environmental toxicity and risks to human health. In this study, we explored the proteomic changes in the Pseudomonas sp. C9 strain when exposed to iprodione, to gain insights into the affected metabolic pathways and enzymes involved in iprodione tolerance and biodegradation processes. As a result, we identified 1472 differentially expressed proteins in response to iprodione exposure, with 978 proteins showing significant variations. We observed that the C9 strain upregulated the expression of efflux pumps, enhancing its tolerance to iprodione and other harmful compounds. Peptidoglycan-binding proteins LysM, glutamine amidotransferase, and protein Ddl were similarly upregulated, indicating their potential role in altering and preserving bacterial cell wall structure, thereby enhancing tolerance. We also observed the presence of hydrolases and amidohydrolases, essential enzymes for iprodione biodegradation. Furthermore, the exclusive identification of ABC transporters and multidrug efflux complexes among proteins present only during iprodione exposure suggests potential counteraction against the inhibitory effects of iprodione on downregulated proteins. These findings provide new insights into iprodione tolerance and biodegradation by the Pseudomonas sp. C9 strain.
Collapse
Affiliation(s)
- Pamela Donoso-Piñol
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Gabriela Briceño
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Joseph A. M. Evaristo
- Laboratorio de Proteómica, LADETEC, Instituto de Química, Universidad Federal de Rio de Janeiro, Rio de Janeiro 22775-000, Brazil; (J.A.M.E.); (F.C.S.N.)
| | - Fábio C. S. Nogueira
- Laboratorio de Proteómica, LADETEC, Instituto de Química, Universidad Federal de Rio de Janeiro, Rio de Janeiro 22775-000, Brazil; (J.A.M.E.); (F.C.S.N.)
| | - Heidi Schalchli
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
4
|
James VK, Voss BJ, Helms A, Trent MS, Brodbelt JS. Investigating Lipid Transporter Protein and Lipid Interactions Using Variable Temperature Electrospray Ionization, Ultraviolet Photodissociation Mass Spectrometry, and Collision Cross Section Analysis. Anal Chem 2024; 96:12676-12683. [PMID: 39038171 PMCID: PMC11533218 DOI: 10.1021/acs.analchem.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Gram-negative bacteria develop and exhibit resistance to antibiotics, owing to their highly asymmetric outer membrane maintained by a group of six proteins comprising the Mla (maintenance of lipid asymmetry) pathway. Here, we investigate the lipid binding preferences of one Mla protein, MlaC, which transports lipids through the periplasm. We used ultraviolet photodissociation (UVPD) to identify and characterize modifications of lipids endogenously bound to MlaC expressed in three different bacteria strains. UVPD was also used to localize lipid binding to MlaC residues 130-140, consistent with the crystal structure reported for lipid-bound MlaC. The impact of removing the bound lipid from MlaC on its structure was monitored based on collision cross section measurements, revealing that the protein unfolded prior to release of the lipid. The lipid selectivity of MlaC was evaluated based on titrimetric experiments, indicating that MlaC-bound lipids in various classes (sphingolipids, glycerophospholipids, and fatty acids) as long as they possessed no more than two acyl chains.
Collapse
Affiliation(s)
- Virginia K. James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bradley J. Voss
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Amanda Helms
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine and Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Murphy BT, Wiepen JJ, Graham DE, Swanson SK, Kashipathy MM, Cooper A, Battaile KP, Johnson DK, Florens L, Blevins JS, Lovell S, Zückert WR. Borrelia burgdorferi BB0346 is an Essential, Structurally Variant LolA Homolog that is Primarily Required for Homeostatic Localization of Periplasmic Lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606844. [PMID: 39149330 PMCID: PMC11326224 DOI: 10.1101/2024.08.06.606844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In diderm bacteria, the Lol pathway canonically mediates the periplasmic transport of lipoproteins from the inner membrane (IM) to the outer membrane (OM) and therefore plays an essential role in bacterial envelope homeostasis. After extrusion of modified lipoproteins from the IM via the LolCDE complex, the periplasmic chaperone LolA carries lipoproteins through the periplasm and transfers them to the OM lipoprotein insertase LolB, itself a lipoprotein with a LolA-like fold. Yet, LolB homologs appear restricted to γ-proteobacteria and are missing from spirochetes like the tick-borne Lyme disease pathogen Borrelia burgdorferi, suggesting a different hand-off mechanism at the OM. Here, we solved the crystal structure of the B. burgdorferi LolA homolog BB0346 (LolABb) at 1.9 Å resolution. We identified multiple structural deviations in comparative analyses to other solved LolA structures, particularly a unique LolB-like protruding loop domain. LolABb failed to complement an Escherichia coli lolA knockout, even after codon optimization, signal I peptide adaptation, and a C-terminal chimerization which had allowed for complementation with an α-proteobacterial LolA. Analysis of a conditional B. burgdorferi lolA knockout strain indicated that LolABb was essential for growth. Intriguingly, protein localization assays indicated that initial depletion of LolABb led to an emerging mislocalization of both IM and periplasmic OM lipoproteins, but not surface lipoproteins. Together, these findings further support the presence of two separate primary secretion pathways for periplasmic and surface OM lipoproteins in B. burgdorferi and suggest that the distinct structural features of LolABb allow it to function in a unique LolB-deficient lipoprotein sorting system.
Collapse
Affiliation(s)
- Bryan T. Murphy
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics & Immunology, Kansas City, Kansas
| | - Jacob J. Wiepen
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics & Immunology, Kansas City, Kansas
| | - Danielle E. Graham
- University of Arkansas for Medical Sciences, Department of Microbiology & Immunology, Little Rock, Arkansas
| | | | - Maithri M. Kashipathy
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, 98109, USA
| | - Anne Cooper
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, 98109, USA
- University of Kansas, Protein Structure and X-ray Crystallography Laboratory, Lawrence, Kansas
| | | | - David K. Johnson
- University of Kansas, Protein Structure and X-ray Crystallography Laboratory, Lawrence, Kansas
| | | | - Jon S. Blevins
- University of Arkansas for Medical Sciences, Department of Microbiology & Immunology, Little Rock, Arkansas
| | - Scott Lovell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, 98109, USA
- University of Kansas, Protein Structure and X-ray Crystallography Laboratory, Lawrence, Kansas
| | - Wolfram R. Zückert
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics & Immunology, Kansas City, Kansas
| |
Collapse
|
6
|
Sposato D, Mercolino J, Torrini L, Sperandeo P, Lucidi M, Alegiani R, Varone I, Molesini G, Leoni L, Rampioni G, Visca P, Imperi F. Redundant essentiality of AsmA-like proteins in Pseudomonas aeruginosa. mSphere 2024; 9:e0067723. [PMID: 38305166 PMCID: PMC10900882 DOI: 10.1128/msphere.00677-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
The outer membrane (OM) is an essential structure of Gram-negative bacteria that provides mechanical strength and protection from large and/or hydrophobic toxic molecules, including many antibiotics. The OM is composed of glycerophospholipids (GPLs) and lipopolysaccharide (LPS) in the inner and outer leaflets, respectively, and hosts integral β-barrel proteins and lipoproteins. While the systems responsible for translocation and insertion of LPS and OM proteins have been elucidated, the mechanism(s) mediating transport of GPLs from the inner membrane to the OM has remained elusive for decades. Very recently, studies performed in Escherichia coli proposed a role in this process for AsmA-like proteins that are predicted to share structural features with eukaryotic lipid transporters. In this study, we provide the first systematic investigation of AsmA-like proteins in a bacterium other than E. coli, the opportunistic human pathogen Pseudomonas aeruginosa. Bioinformatic analyses revealed that P. aeruginosa possesses seven AsmA-like proteins. Deletion of asmA-like genes in many different combinations, coupled with conditional mutagenesis, revealed that four AsmA-like proteins are redundantly essential for growth and OM integrity in P. aeruginosa, including a novel AsmA-like protein (PA4735) that is not present in E. coli. Cells depleted of AsmA-like proteins showed severe defects in the OM permeability barrier that were partially rescued by lowering the synthesis or transport of LPS. Since fine balancing of GPL and LPS levels is crucial for OM integrity, this evidence supports the role of AsmA-like proteins in GPL transport toward the OM. IMPORTANCE Given the importance of the outer membrane (OM) for viability and antibiotic resistance in Gram-negative bacteria, in the last decades, several studies have focused on the characterization of the systems involved in OM biogenesis, which have also been explored as targets for antibacterial drug development. However, the mechanism mediating translocation of glycerophospholipids (GPLs) to the OM remained unknown until recent studies provided evidence that AsmA-like proteins could be responsible for this process. Here, we demonstrate for the first time that AsmA-like proteins are essential and redundant for growth and OM integrity in a Gram-negative bacterium other than the model organism Escherichia coli and demonstrate that the human pathogen Pseudomonas aeruginosa has an additional essential AsmA-like protein that is not present in E. coli, thus expanding the range of AsmA-like proteins that play key functions in Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Luisa Torrini
- Department of Science, University Roma Tre, Rome, Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Massimiliano Lucidi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | | | - Ilaria Varone
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
7
|
Yeow J, Luo M, Chng SS. Molecular mechanism of phospholipid transport at the bacterial outer membrane interface. Nat Commun 2023; 14:8285. [PMID: 38092770 PMCID: PMC10719372 DOI: 10.1038/s41467-023-44144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer with outer leaflet lipopolysaccharides and inner leaflet phospholipids (PLs). This unique lipid asymmetry renders the OM impermeable to external insults, including antibiotics and bile salts. To maintain this barrier, the OmpC-Mla system removes mislocalized PLs from the OM outer leaflet, and transports them to the inner membrane (IM); in the first step, the OmpC-MlaA complex transfers PLs to the periplasmic chaperone MlaC, but mechanistic details are lacking. Here, we biochemically and structurally characterize the MlaA-MlaC transient complex. We map the interaction surfaces between MlaA and MlaC in Escherichia coli, and show that electrostatic interactions are important for MlaC recruitment to the OM. We further demonstrate that interactions with MlaC modulate conformational states in MlaA. Finally, we solve a 2.9-Å cryo-EM structure of a disulfide-trapped OmpC-MlaA-MlaC complex in nanodiscs, reinforcing the mechanism of MlaC recruitment, and highlighting membrane thinning as a plausible strategy for directing lipids for transport. Our work offers critical insights into retrograde PL transport by the OmpC-Mla system in maintaining OM lipid asymmetry.
Collapse
Affiliation(s)
- Jiang Yeow
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117558, Singapore
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, 117456, Singapore.
| |
Collapse
|
8
|
The enemy within: lipid asymmetry in intracellular parasite-host interactions. Emerg Top Life Sci 2023; 7:67-79. [PMID: 36820809 DOI: 10.1042/etls20220089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Eukaryotic pathogens with an intracellular parasitic lifestyle are shielded from extracellular threats during replication and growth. In addition to many nutrients, parasites scavenge host cell lipids to establish complex membrane structures inside their host cells. To counteract the disturbance of the host cell plasma membrane they have evolved strategies to regulate phospholipid asymmetry. In this review, the function and importance of lipid asymmetry in the interactions of intracellular protozoan parasites with the target and immune cells of the host are highlighted. The malaria parasite Plasmodium infects red blood cells and extensively refurbishes these terminally differentiated cells. Cholesterol depletion and an altered intracellular calcium ion homeostasis can lead to disruption in erythrocyte membrane asymmetry and increased exposure of phosphatidylserine (PS). Binding to the PS receptor on monocytes and macrophages results in phagocytosis and destruction of infected erythrocytes. Leishmania parasites display apoptotic mimicry by actively enhancing PS exposure on their surface to trigger increased infection of macrophages. In extracellular Toxoplasma gondii a P4-type ATPase/CDC50 co-chaperone pair functions as a flippase important for exocytosis of specialised secretory organelles. Identification and functional analysis of parasite lipid-translocating proteins, i.e. flippases, floppases, and scramblases, will be central for the recognition of the molecular mechanisms of parasite/host interactions. Ultimately, a better understanding of parasitic diseases, host immunity, and immune escape by parasites require more research on the dynamics of phospholipid bilayers of parasites and the infected host cell.
Collapse
|
9
|
Sperandeo P, Martorana AM, Zaccaria M, Polissi A. Targeting the LPS export pathway for the development of novel therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119406. [PMID: 36473551 DOI: 10.1016/j.bbamcr.2022.119406] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
The rapid rise of multi-resistant bacteria is a global health threat. This is especially serious for Gram-negative bacteria in which the impermeable outer membrane (OM) acts as a shield against antibiotics. The development of new drugs with novel modes of actions to combat multi-drug resistant pathogens requires the selection of suitable processes to be targeted. The LPS export pathway is an excellent under exploited target for drug development. Indeed, LPS is the major determinant of the OM permeability barrier, and its biogenetic pathway is conserved in most Gram-negatives. Here we describe efforts to identify inhibitors of the multiprotein Lpt system that transports LPS to the cell surface. Despite none of these molecules has been approved for clinical use, they may represent valuable compounds for optimization. Finally, the recent discovery of a link between inhibition of LPS biogenesis and changes in peptidoglycan structure uncovers additional targets to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra M Martorana
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Marta Zaccaria
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
10
|
Talà A, Calcagnile M, Resta SC, Pennetta A, De Benedetto GE, Alifano P. Thiostrepton, a resurging drug inhibiting the stringent response to counteract antibiotic-resistance and expression of virulence determinants in Neisseria gonorrhoeae. Front Microbiol 2023; 14:1104454. [PMID: 36910221 PMCID: PMC9998046 DOI: 10.3389/fmicb.2023.1104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Due to the increased resistance to all available antibiotics and the lack of vaccines, Neisseria gonorrhoeae (the gonococcus) poses an urgent threat. Although the mechanisms of virulence and antibiotic resistance have been largely investigated in this bacterium, very few studies have addressed the stringent response (SR) that in pathogenic bacteria controls the expression of genes involved in host-pathogen interaction and tolerance and persistence toward antibiotics. In this study, the results of the transcriptome analysis of a clinical isolate of N. gonorrhoeae, after induction of the SR by serine hydroxamate, provided us with an accurate list of genes that are transcriptionally modulated during the SR. The list includes genes associated with metabolism, cellular machine functions, host-pathogen interaction, genome plasticity, and antibiotic tolerance and persistence. Moreover, we found that the artificial induction of the SR in N. gonorrhoeae by serine hydroxamate is prevented by thiostrepton, a thiopeptide antibiotic that is known to interact with ribosomal protein L11, thereby inhibiting functions of EF-Tu and EF-G, and binding of pppGpp synthase I (RelA) to ribosome upon entry of uncharged tRNA. We found that N. gonorrhoeae is highly sensitive to thiostrepton under in vitro conditions, and that thiostrepton, in contrast to other antibiotics, does not induce tolerance or persistence. Finally, we observed that thiostrepton attenuated the expression of key genes involved in the host-pathogen interaction. These properties make thiostrepton a good drug candidate for dampening bacterial virulence and preventing antibiotic tolerance and persistence. The ongoing challenge is to increase the bioavailability of thiostrepton through the use of chemistry and nanotechnology.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonio Pennetta
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
11
|
Ekiert DC, Coudray N, Bhabha G. Structure and mechanism of the bacterial lipid ABC transporter, MlaFEDB. Curr Opin Struct Biol 2022; 76:102429. [PMID: 35981415 PMCID: PMC9509461 DOI: 10.1016/j.sbi.2022.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
The cell envelope of Gram-negative bacteria is composed of an inner membrane, outer membane, and an intervening periplasmic space. How the outer membrane lipids are trafficked and assembled there, and how the asymmetry of the outer membrane is maintained is an area of intense research. The Mla system has been implicated in the maintenance of lipid asymmetry in the outer membrane, and is generally thought to drive the removal of mislocalized phospholipids from the outer membrane and their retrograde transport to the inner membrane. At the heart of the Mla pathway is a structurally unique ABC transporter complex in the inner membrane, called MlaFEDB. Recently, an explosion of cryo-EM studies has begun to shed light on the structure and lipid translocation mechanism of MlaFEDB, with many parallels to other ABC transporter families, including human ABCA and ABCG, as well as bacterial lipopolysaccharide and O-antigen transporters. Here we synthesize information from all available structures, and propose a model for lipid trafficking across the cell envelope by MlaFEDB.
Collapse
Affiliation(s)
- Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|