1
|
Chakraborty A, Sgrò CM, Mirth CK. Untangling plastic responses to combined thermal and dietary stress in insects. CURRENT OPINION IN INSECT SCIENCE 2024:101328. [PMID: 39743206 DOI: 10.1016/j.cois.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Animals are exposed to changes in their environmental conditions daily. Such changes will become increasingly more erratic and unpredictable with ongoing climate change. Responses to changing environments are influenced by the genetic architecture of the traits under selection, and modified by a range of physiological, developmental, and behavioural changes resulting from phenotypic plasticity. Furthermore, the interactions between multiple environmental stressors to which organisms are exposed can generate unexpected phenotypic responses. Understanding how genetic and plastic variation contributes to the response to combined environmental stress will be key to predicting how animals will cope with climate change, and ultimately will define their ability to persist. Here, we review the approaches used to explore how animals respond to combined stressors, specifically nutrition and temperature, the physiological mechanisms that underlie such plastic responses, and how genetic variation alters this plasticity.
Collapse
Affiliation(s)
- Avishikta Chakraborty
- University College London, London, United Kingdom; Monash University, Clayton, Melbourne, Australia
| | - Carla M Sgrò
- Monash University, Clayton, Melbourne, Australia
| | | |
Collapse
|
2
|
Helou B, Ritchie MW, MacMillan HA, Andersen MK. Dietary potassium and cold acclimation additively increase cold tolerance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104701. [PMID: 39251183 DOI: 10.1016/j.jinsphys.2024.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
In the cold, chill susceptible insects lose the ability to regulate ionic and osmotic gradients. This leads to hemolymph hyperkalemia that drives a debilitating loss of cell membrane polarization, triggering cell death pathways and causing organismal injury. Biotic and abiotic factors can modulate insect cold tolerance by impacting the ability to mitigate or prevent this cascade of events. In the present study, we test the combined and isolated effects of dietary manipulations and thermal acclimation on cold tolerance in fruit flies. Specifically, we acclimated adult Drosophila melanogaster to 15 or 25 °C and fed them either a K+-loaded diet or a control diet. We then tested the ability of these flies to recover from and survive a cold exposure, as well as their capacity to protect transmembrane K+ gradients, and intracellular Na+ concentration. As predicted, cold-exposed flies experienced hemolymph hyperkalemia and cold-acclimated flies had improved cold tolerance due to an improved maintenance of the hemolymph K+ concentration at low temperature. Feeding on a high-K+ diet improved cold tolerance additively, but paradoxically reduced the ability to maintain extracellular K+ concentrations. Cold-acclimation and K+-feeding additively increased the intracellular K+ concentration, aiding in maintenance of the transmembrane K+ gradient during cold exposure despite cold-induced hemolymph hyperkalemia. There was no effect of acclimation or diet on intracellular Na+ concentration. These findings suggest intracellular K+ loading and reduced muscle membrane K+ sensitivity as mechanisms through which cold-acclimated and K+-fed flies are able to tolerate hemolymph hyperkalemia.
Collapse
Affiliation(s)
- Bassam Helou
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Marshall W Ritchie
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Mads Kuhlmann Andersen
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
Allen MC, Ritchie MW, El-Saadi MI, MacMillan HA. Effects of a high cholesterol diet on chill tolerance are highly context-dependent in Drosophila. J Therm Biol 2024; 119:103789. [PMID: 38340464 DOI: 10.1016/j.jtherbio.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/11/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
Chill susceptible insects are thought to be injured through different mechanisms depending on the duration and severity of chilling. While chronic chilling causes "indirect" injury through disruption of metabolic and ion homeostasis, acute chilling is suspected to cause "direct" injury, in part through phase transitions of cell membrane lipids. Dietary supplementation of cholesterol can reduce acute chilling injury in Drosophila melanogaster (Shreve et al., 2007), but the generality of this effect and the mechanisms underlying it remain unclear. To better understand how and why cholesterol has this effect, we assessed how a high cholesterol diet and thermal acclimation independently and interactively impact several measures of chill tolerance. Cholesterol supplementation positively affected tolerance to acute chilling in warm-acclimated flies (as reported previously). Conversely, feeding on the high-cholesterol diet negatively affected tolerance to chronic chilling in both cold and warm acclimated flies, as well as tolerance to acute chilling in cold acclimated flies. Cholesterol had no effect on the ability of flies to remain active in the cold or recover movement after a cold stress. Our findings support the idea that dietary cholesterol reduces mechanical injury to membranes caused by direct chilling injury, and that acute and chronic chilling are associated with distinct mechanisms of injury. Feeding on a high-cholesterol diet may interfere with mechanisms involved in cold acclimation, leaving cholesterol augmented flies more susceptible to chilling injury under some conditions.
Collapse
Affiliation(s)
- Mitchell C Allen
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Marshall W Ritchie
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Mahmoud I El-Saadi
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
4
|
Ben-Yosef M, Altman Y, Nemni-Lavi E, Papadopoulos N, Nestel D. Larval nutritional-stress and tolerance to extreme temperatures in the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Fly (Austin) 2023; 17:2157161. [PMID: 36576164 PMCID: PMC9809946 DOI: 10.1080/19336934.2022.2157161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Within the factors affecting insect tolerance to extreme environmental conditions, insect nutrition, particularly of immature stages, has received insufficient attention. In the present study, we address this gap by investigating the effects of larval nutrition on heat and cold tolerance of adult Bactrocera zonata - an invasive, polyphagous fruit fly pest. We manipulated the nutritional content in the larval diet by varying the amount of added yeast (2-10% by weight), while maintaining a constant sucrose content. Adults derived from the different larval diets were tested for their tolerance to extreme heat and cold stress. Restricting the amount of yeast reduced the efficacy of the larval diet (i.e. number of pupae produced per g of diet) as well as pupal and adult fresh weight, both being significantly lower for yeast-poor diets. Additionally, yeast restriction during the larval stage (2% yeast diet) significantly reduced the amount of protein but not lipid reserves of newly emerged males and females. Adults maintained after emergence on granulated sugar and water for 10 days were significantly more tolerant to extreme heat (i.e. knock-down time at 42 oC) when reared as larvae on yeast-rich diets (8% and 10% yeast) compared to counterparts developing on a diet containing 2% yeast. Nevertheless, the composition of the larval diet did not significantly affect adult survival following acute cold stress (exposure to -3°C for 2 hrs.). These results are corroborated by previous findings on Drosophilid flies. Possible mechanisms leading to nutrition-based heat-tolerance in flies are discussed.
Collapse
Affiliation(s)
- M. Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel
| | - Y. Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel
| | - E. Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel
| | - N.T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - D Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel,CONTACT D Nestel Department of Entomology, Institute of Plant Protection, ARO, the Volcani Center, Rishon Letzion, Israel
| |
Collapse
|
5
|
Tian Z, Ma C, Zhang Y, Chen H, Gao X, Guo J, Zhou Z. Feeding on rapid cold hardening Ambrosia artemisiifolia enhances cold tolerance of Ophraella communa. FRONTIERS IN PLANT SCIENCE 2023; 14:1114026. [PMID: 37528981 PMCID: PMC10390072 DOI: 10.3389/fpls.2023.1114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
Low temperatures greatly influence newly introduced species, and increased cold tolerance can facilitate their establishment in new environments. The invasive alien species Ambrosia artemisiifolia is distributed at high latitudes and altitudes, where it suffers more from cold stress than it would at low latitudes or altitudes. Whether cold stress influences the accumulation of cryoprotectants and cold tolerance in A. artemisiifolia, and further influences the cold tolerance of its biological control agent, Ophraella communa, through feeding remain unknown. We investigated the levels of cryoprotectants and metabolic changes in A. artemisiifolia. We found that the level of total sugar, trehalose, proline, and other cold responsible metabolites increased in A. artemisiifolia after rapid cold-hardening (RCH) treatment, when compared to normal plants. These indicated that RCH treatment could improve the cold-hardiness of A. artemisiifolia. We then investigated the levels of cryoprotectants and metabolic changes in O. communa. We found that O. communa fed on RCH-treated A. artemisiifolia had higher levels of total sugar, trehalose, proline, glycerol, lipid, lower water content, lower super-cooling point, and increased cold tolerance compared to O. communa fed on normal A. artemisiifolia. This suggested that O. communa fed on cold-hardened A. artemisiifolia could increase its cold tolerance. Results showed a trophic transmission in insect cold tolerance. Our study enriches the theoretical basis for the co-evolution of cold tolerance in invasive and herbivorous insects.
Collapse
Affiliation(s)
- Zhenqi Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Hongsong Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuyuan Gao
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
6
|
Teets NM, Hayward SAL. Editorial on combatting the cold: Comparative physiology of low temperature and related stressors in arthropods. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111037. [PMID: 34274530 DOI: 10.1016/j.cbpa.2021.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | - Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|