1
|
Sorger JM. How to objectively evaluate the impact of image-guided surgery technologies. Eur J Nucl Med Mol Imaging 2024; 51:2869-2877. [PMID: 37971499 DOI: 10.1007/s00259-023-06504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE This manuscript aims to provide a better understanding of methods and techniques with which one can better quantify the impact of image-guided surgical technologies. METHODS A literature review was conducted with regard to economic and technical methods of medical device evaluation in various countries. Attention was focused on applications related to image-guided interventions that have enabled procedures to be performed in a minimally invasive manner, produced superior clinical outcomes, or have become standard of care. RESULTS The review provides examples of successful implementations and adoption of image-guided surgical techniques, mostly in the field of neurosurgery. Failures as well as newly developed technologies still undergoing cost-efficacy analysis are discussed. CONCLUSION The field of image-guided surgery has evolved from solely using preoperative images to utilizing highly specific tools and software to provide more information to the interventionalist in real time. While deformations in soft tissue often preclude the use of such instruments outside of neurosurgery, recent developments in optical and radioactive guidance have enabled surgeons to better account for organ motion and provide feedback to the surgeon as tissue is cut. These technologies are currently undergoing value assessments in many countries and hold promise to improve outcomes for patients, surgeons, care teams, payors, and society in general.
Collapse
|
2
|
Rauf SA, Ahmed R, Hussain T, Saad M, Shah HH, Jamalvi SA, Yogeeta F, Devi M, Subash A, Gul M, Ahmed S, Haque MA. Fluorescence in neurosurgery: its therapeutic and diagnostic significance - a comprehensive review. Ann Med Surg (Lond) 2024; 86:4255-4261. [PMID: 38989178 PMCID: PMC11230751 DOI: 10.1097/ms9.0000000000002218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Abstract
This review provides a comprehensive overview of the therapeutic and diagnostic implications of fluorescence imaging in neurosurgery. Fluorescence imaging has become a valuable intraoperative visualization and guidance tool, facilitating precise surgical interventions. The therapeutic role of fluorescence is examined, including its application in photodynamic therapy and tumor-targeted therapy. It also explores its diagnostic capabilities in tumor detection, margin assessment, and blood-brain barrier evaluation. Drawing from clinical and preclinical studies, the review underscores the growing evidence supporting the efficacy of fluorescence imaging in neurosurgical practice. Furthermore, it discusses current limitations and future directions, emphasizing the potential for emerging technologies to enhance the utility and accessibility of fluorescence imaging, ultimately improving patient outcomes in neurosurgery.
Collapse
Affiliation(s)
| | | | - Tooba Hussain
- Dow University of Health Sciences, Karachi, Pakistan
| | | | | | | | | | | | - Arun Subash
- Dow University of Health Sciences, Karachi, Pakistan
| | - Maryam Gul
- Dow University of Health Sciences, Karachi, Pakistan
| | - Shaheer Ahmed
- Dow University of Health Sciences, Karachi, Pakistan
| | - Md Ariful Haque
- Department of Public Health, Atish Dipankar University of Science and Technology
- Voice of Doctors Research School, Dhaka, Bangladesh
- Department of Orthopaedic Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
3
|
Kim G, Luo Y, Shin M, Bouffard J, Bae J, Kim Y. Making the Brightest Ones Dim: Maximizing the Photothermal Conversion Efficiency of BODIPY-Based Photothermal Agents. Adv Healthc Mater 2024; 13:e2400885. [PMID: 38573765 DOI: 10.1002/adhm.202400885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The successful implementation of photothermal therapy (PTT) in cancer treatment hinges on the development of highly effective photothermal agents (PTAs). Boron dipyrromethene (BODIPY) dyes, being well known for their high brightness and quantum efficiencies, are the antithesis of PTAs. Nonetheless, a systematic exploration of the photophysics and photothermal characteristics of a series of π-extended BODIPY dyes with high absorptivity in the near-infrared (NIR) region has achieved superior photothermal conversion efficiencies (>90%), in both monomeric state and nanoparticles after encapsulation in a biocompatible polyethyleneglycol 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy-(polyethylene glycol)-2000]. Optimal PTA candidates combine strong NIR absorption provided by extended donor-acceptor conjugation and an optimization of the electronic and steric effects of meso-substituents to maximize photothermal conversion performance. The PTT-optimized meso-CF3-BODIPY, TCF3PEn exhibits exceptional efficacy in inducing cancer cell apoptosis and in vivo tumor ablation using low-power NIR laser irradiation (0.3 W cm-2, 808 nm) as well as excellent biological safety, underscoring its potential for advancing light-induced cancer therapies.
Collapse
Affiliation(s)
- Gibeom Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Yongyang Luo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Myunghwan Shin
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Jean Bouffard
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| |
Collapse
|
4
|
Zhang Z, Du Y, Shi X, Wang K, Qu Q, Liang Q, Ma X, He K, Chi C, Tang J, Liu B, Ji J, Wang J, Dong J, Hu Z, Tian J. NIR-II light in clinical oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:449-467. [PMID: 38693335 DOI: 10.1038/s41571-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Novel strategies utilizing light in the second near-infrared region (NIR-II; 900-1,880 nm wavelengths) offer the potential to visualize and treat solid tumours with enhanced precision. Over the past few decades, numerous techniques leveraging NIR-II light have been developed with the aim of precisely eliminating tumours while maximally preserving organ function. During cancer surgery, NIR-II optical imaging enables the visualization of clinically occult lesions and surrounding vital structures with increased sensitivity and resolution, thereby enhancing surgical quality and improving patient prognosis. Furthermore, the use of NIR-II light promises to improve cancer phototherapy by enabling the selective delivery of increased therapeutic energy to tissues at greater depths. Initial clinical studies of NIR-II-based imaging and phototherapy have indicated impressive potential to decrease cancer recurrence, reduce complications and prolong survival. Despite the encouraging results achieved, clinical translation of innovative NIR-II techniques remains challenging and inefficient; multidisciplinary cooperation is necessary to bridge the gap between preclinical research and clinical practice, and thus accelerate the translation of technical advances into clinical benefits. In this Review, we summarize the available clinical data on NIR-II-based imaging and phototherapy, demonstrating the feasibility and utility of integrating these technologies into the treatment of cancer. We also introduce emerging NIR-II-based approaches with substantial potential to further enhance patient outcomes, while also highlighting the challenges associated with imminent clinical studies of these modalities.
Collapse
Affiliation(s)
- Zeyu Zhang
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Qiaojun Qu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Wang
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
5
|
Mohamed AA, Caussat T, Mouhawasse E, Ali R, Johansen PM, Lucke-Wold B. Neurosurgical Intervention for Nerve and Muscle Biopsies. Diagnostics (Basel) 2024; 14:1169. [PMID: 38893695 PMCID: PMC11172125 DOI: 10.3390/diagnostics14111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: Neurologic and musculoskeletal diseases represent a considerable portion of the underlying etiologies responsible for the widely prevalent symptoms of pain, weakness, numbness, and paresthesia. Because of the subjective and often nonspecific nature of these symptoms, different diagnostic modalities have been explored and utilized. (2) Methods: Literature review. (3) Results: Nerve and muscle biopsy remains the gold standard for diagnosing many of the responsible neurological and musculoskeletal conditions. However, the need for invasive tissue sampling is diminishing as more investigations explore alternative diagnostic modalities. Because of this, it is important to explore the current role of neurosurgical intervention for nerve and muscle biopsies and its current relevance in the diagnostic landscape of neurological and musculoskeletal disorders. With consideration of the role of nerve and muscle biopsy, it is also important to explore innovations and emerging techniques for conducting these procedures. This review explores the indications and emerging techniques for neurological intervention for nerve and muscle biopsies. (4) Conclusions: The role of neurosurgical intervention for nerve and muscle biopsy remains relevant in diagnosing many neurological and musculoskeletal disorders. Biopsy is especially relevant as a supportive point of evidence for diagnosis in atypical cases. Additionally, emerging techniques have been explored to guide diagnostics and biopsy, conduct less invasive biopsies, and reduce risks of worsening neurologic function and other symptoms secondary to biopsy.
Collapse
Affiliation(s)
- Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Thomas Caussat
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Edwin Mouhawasse
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Rifa Ali
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Phillip M. Johansen
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33613, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
6
|
Wang LG, Montaño AR, Masillati AM, Jones JA, Barth CW, Combs JR, Kumarapeli SU, Shams NA, van den Berg NS, Antaris AL, Galvis SN, McDowall I, Rizvi SZH, Alani AWG, Sorger JM, Gibbs SL. Nerve Visualization using Phenoxazine-Based Near-Infrared Fluorophores to Guide Prostatectomy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304724. [PMID: 37653576 DOI: 10.1002/adma.202304724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Indexed: 09/02/2023]
Abstract
Fluorescence-guided surgery (FGS) is poised to revolutionize surgical medicine through near-infrared (NIR) fluorophores for tissue- and disease-specific contrast. Clinical open and laparoscopic FGS vision systems operate nearly exclusively at NIR wavelengths. However, tissue-specific NIR contrast agents compatible with clinically available imaging systems are lacking, leaving nerve tissue identification during prostatectomy a persistent challenge. Here, it is shown that combining drug-like molecular design concepts and fluorophore chemistry enabled the production of a library of NIR phenoxazine-based fluorophores for intraoperative nerve-specific imaging. The lead candidate readily delineated prostatic nerves in the canine and iliac plexus in the swine using the clinical da Vinci Surgical System that has been popularized for minimally invasive prostatectomy procedures. These results demonstrate the feasibility of molecular engineering of NIR nerve-binding fluorophores for ready integration into the existing surgical workflow, paving the path for clinical translation to reduce morbidity from nerve injury for prostate cancer patients.
Collapse
Affiliation(s)
- Lei G Wang
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Antonio R Montaño
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Anas M Masillati
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Jocelyn A Jones
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Connor W Barth
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Jason R Combs
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | | | - Nourhan A Shams
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | | | | | - S N Galvis
- Intuitive Surgical, Sunnyvale, CA, 94086, USA
| | | | - Syed Zaki Husain Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Adam W G Alani
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | | | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|