1
|
Wang Y, Wang Y, Jiang Y, Qin Q, Wei S. The essential function of cathepsin X of the orange-spotted grouper, Epinephelus coioides during SGIV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105278. [PMID: 39395685 DOI: 10.1016/j.dci.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Cathepsin X, a class of cysteine proteases in the lysosome, involved in intracellular protein degradation processes. Numerous reports revealed that many kinds of cysteine proteases played a crucial role in pathogen invasion. To investigate the relationship between cathepsin X of teleost fish and virus infection, EcCX was cloned and characterized in the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of EcCX included 909 nucleotides and encoded a protein consisting of 302 amino acids, which shared 75% and 56% identity with zebrafish and humans, respectively. The protein EcCX mainly consisted of a signal peptide (1-19 aa), a pro-pre-peptide region (20-55 aa), and a mature cysteine protease region (56-302 aa). Subcellular localization analysis showed that EcCX was mainly distributed in the cytoplasm, but EcCX ectoped to the vicinity of apoptotic vesicles in FHM cells during SGIV infection. Following stimulation with SGIV or Poly (dA:dT), there was a notable rise in the expression levels of EcCX. EcCX overexpression facilitated virus infection, upregulated the production of inflammatory factors, and induced the activation of the NF-κB promoter. Furthermore, the overexpression of EcCX also accelerated the process of SGIV-induced apoptosis, potentially by enhancing the promoter activity of P53 and AP-1. Overall, our findings demonstrated a correlation between the function of EcCX and SGIV infection, providing a new understanding of the mechanisms involved in fish virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yewen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
2
|
Monson C, Goetz G, Forsgren K, Swanson P, Young G. In vivo treatment with a non-aromatizable androgen rapidly alters the ovarian transcriptome of previtellogenic secondary growth coho salmon (Onchorhynchus kisutch). PLoS One 2024; 19:e0311628. [PMID: 39383164 PMCID: PMC11463792 DOI: 10.1371/journal.pone.0311628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
Recent evidence suggests that androgens are a potent driver of growth during late the primary stage of ovarian follicle development in teleosts. We have previously shown that the non-aromatizable androgen, 11-ketotestosterone (11-KT), both advances ovarian follicle growth in vivo and dramatically alters the primary growth ovarian transcriptome in coho salmon. Many of the transcriptomic changes pointed towards 11-KT driving process associated with the transition to a secondary growth phenotype. In the current study, we implanted previtellogenic early secondary growth coho salmon with cholesterol pellets containing 11-KT and performed RNA-Seq on ovarian tissue after 3 days in order to identify alterations to the ovarian transcriptome in early secondary growth. We identified 8,707 contiguous sequences (contigs) that were differentially expressed (DE) between control and 11-KT implanted fish and were able to collapse those to 3,853 gene-level IDs, more than a 3-fold more DE contigs than at the primary growth stage we reported previously. These contigs included genes encoding proteins involved in steroidogenesis, vitellogenin and lipid uptake, follicle stimulating hormone signaling, growth factor signaling, and structural proteins, suggesting androgens continue to promote previtellogenic secondary growth.
Collapse
Affiliation(s)
- Christopher Monson
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giles Goetz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Kristy Forsgren
- Department of Biological Science, California State University, Fullerton, Fullerton, California, United States of America
| | - Penny Swanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Graham Young
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
3
|
Choi KM, Joo MS, Cho DH, Han HJ, Kim MS, Cho MY, Jung SH, Kim DH, Park CI. Functional analysis and gene expression profiling of extracellular cathepsin Z in red sea bream, Pagrus major. FISH & SHELLFISH IMMUNOLOGY 2019; 93:208-215. [PMID: 31306760 DOI: 10.1016/j.fsi.2019.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Cathepsin Z (CTSZ) is a lysosomal cysteine protease that is known to be involved in the maintenance of homeostasis and the biological mechanisms of immune cells. In this study, we have confirmed the tissue specific expression of the cathepsin Z (PmCTSZ) gene in Pagrus major, and confirmed its biological function after producing recombinant protein using Escherichia coli (E. coli). Multiple sequence alignment analysis revealed that the active site of the cysteine proteases and three N-glycosylation sites of the deduced protein sequence were highly conserved among all of the organisms. Phylogenetic analysis revealed that PmCTSZ was included in the clusters of CTSZ and the cysteine proteases of other bony fish and is most closely related to Japanese flounder CTSZ. PmCTSZ was distributed in all of the tissues from healthy red sea bream that were used in the experiment and was most abundantly found in the spleen and gill. Analysis of mRNA expression after bacterial (Edwardsiella piscicida: E. piscicida and Streptococcus iniae: S. iniae) or viral (red seabream iridovirus: RSIV) challenge showed significant gene expression regulation in immune-related tissues, but they maintained relatively normal levels of expression. We produced recombinant PmCTSZ (rPmCTSZ) using an E. coli expression system and confirmed the biological function of extracellular rPmCTSZ in vitro. We found that bacterial proliferation was significantly inhibited by rPmCTSZ, and the leukocytes of red sea bream also induced apoptosis and viability reduction.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Myoung Sug Kim
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Sung Hee Jung
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
4
|
Cai X, Gao C, Song H, Yang N, Fu Q, Tan F, Li C. Characterization, expression profiling and functional characterization of cathepsin Z (CTSZ) in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 84:599-608. [PMID: 30359754 DOI: 10.1016/j.fsi.2018.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Cathepsin Z (CTSZ) is a lysosomal cysteine protease of the papain superfamily. It participates in the host immune defense via phagocytosis, signal transduction, cell-cell communication, proliferation, and migration of immune cells such as monocytes, macrophages, and dendritic cells. In this study, we reported the identification of SmCTSZ, a CTSZ homolog from turbot (Scophthalmus maximus L.). SmCTSZ was 317 residues in length and contains a Pept-C1 domain. In multiple species comparison, SmCTSZ shared 65-93% overall sequence identities with the CTSZ counterparts from human, rat, and several fish species. In the phylogenetic analysis, SmCTSZ showed the closest relationship to Cynoglossus semilaevis. The syntenic analysis revealed the similar neighboring genes of CTSZ across all the selected species, which suggested the synteny encompassing CTSZ region during vertebrate evolution. Subsequently, SmCTSZ was constitutively expressed in various tissues, with the lowest and highest levels in brain and intestine respectively. In addition, SmCTSZ was significantly up-regulated in intestine following both Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmCTSZ showed strong binding ability to all the examined microbial ligands, and the agglutination effect to different bacteria. Taken together, these results indicated SmCTSZ could play important roles in mucosal immune response in the event of bacterial infection in teleost. However, the knowledge of CTSZ are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Xin Cai
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huanhuan Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Jurado J, Villasanta-González A, Tapia-Paniagua ST, Balebona MC, García de la Banda I, Moríñigo MÁ, Prieto-Álamo MJ. Dietary administration of the probiotic Shewanella putrefaciens Pdp11 promotes transcriptional changes of genes involved in growth and immunity in Solea senegalensis larvae. FISH & SHELLFISH IMMUNOLOGY 2018; 77:350-363. [PMID: 29635066 DOI: 10.1016/j.fsi.2018.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/01/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Senegalese sole (Solea senegalensis) has been proposed as a high-potential species for aquaculture diversification in Southern Europe. It has been demonstrated that a proper feeding regimen during the first life stages influences larval growth and survival, as well as fry and juvenile quality. The bacterial strain Shewanella putrefaciens Pdp11 (SpPdp11) has shown very good probiotic properties in Senegalese sole, but information is scarce about its effect in the earliest stages of sole development. Thus, the aim of this study was to investigate the effect of SpPdp11, bioencapsulated in live diet, administered during metamorphosis (10-21 dph) or from the first exogenous feeding of Senegalese sole (2-21 dph). To evaluate the persistence of the probiotic effect, we sampled sole specimens from metamorphosis until the end of weaning (from 23 to 73 dph). This study demonstrated that probiotic administration from the first exogenous feeding produced beneficial effects on Senegalese sole larval development, given that specimens fed this diet exhibited higher and less dispersed weight, as well as increases in both total protein concentration and alkaline phosphatase activity, and in non-specific immune response. Moreover, real-time PCR documented changes in the expression of a set of genes involved in central metabolic functions including genes related to growth, genes coding for proteases (including several digestive enzymes), and genes implicated in the response to stress and in immunity. Overall, these results support the application of SpPdp11 in the first life stages of S. senegalensis as an effective tool with the clear potential to benefit sole aquaculture.
Collapse
Affiliation(s)
- Juan Jurado
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Alejandro Villasanta-González
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Silvana T Tapia-Paniagua
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - María Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | | | - Miguel Ángel Moríñigo
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - María-José Prieto-Álamo
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
6
|
A cysteine protease (cathepsin Z) from disk abalone, Haliotis discus discus : Genomic characterization and transcriptional profiling during bacterial infections. Gene 2017; 627:500-507. [DOI: 10.1016/j.gene.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/29/2017] [Accepted: 07/02/2017] [Indexed: 11/22/2022]
|
7
|
Meier K, Hansen MM, Normandeau E, Mensberg KLD, Frydenberg J, Larsen PF, Bekkevold D, Bernatchez L. Local adaptation at the transcriptome level in brown trout: evidence from early life history temperature genomic reaction norms. PLoS One 2014; 9:e85171. [PMID: 24454810 PMCID: PMC3891768 DOI: 10.1371/journal.pone.0085171] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/23/2013] [Indexed: 01/19/2023] Open
Abstract
Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta) populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C) representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change.
Collapse
Affiliation(s)
- Kristian Meier
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Canada
| | - Karen-Lise D. Mensberg
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jane Frydenberg
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | | | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Canada
| |
Collapse
|
8
|
Bak HJ, Kim MS, Kim NY, Go HJ, Han JW, In Jo H, Ahn SJ, Park NG, Chung JK, Lee HH. Molecular cloning, expression, and enzymatic analysis of cathepsin X from starfish (Asterina pectinifera). Appl Biochem Biotechnol 2012; 169:847-61. [PMID: 23274724 DOI: 10.1007/s12010-012-0033-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/10/2012] [Indexed: 12/01/2022]
Abstract
Cathepsin X, also known as cathepsin Z, is referred to as a "lysosomal proteolytic enzyme" and a member of the peptidase C1 family, which is involved in various biological processes such as immune response, cell adhesion, and proliferation. In the present study, the cDNA of starfish (Asterina pectinifera), which is known to cause serious damage to commercial shellfish mariculture, cathepsin X (ApCtX) was isolated through the combination of homology molecular cloning and rapid amplification of cDNA ends (RACE) methods for the application to find a way to reduce/control starfish densities. The full-length of ApCtX gene was determined to consist of the 2,240 bp nucleotide sequence, which encoded for a preproprotein of 296 amino acids with a molecular mass of about 32.7 kDa. The tissue type expression of ApCtX was determined in various tissues of A. pectinifera and was shown most abundantly in the liver. The cDNA encoding pro-mature enzyme of ApCtX was expressed in Escherichia coli BL21 (DE3) using the pGEX-4T-1 expression vector. Its activity was quantified by cleaving the synthetic peptide Z-Phe-Arg-AMC. The optimal pH for the protease activity was 6.5. The enzymatic activity of proApCtX was reduced by antipain, NEM, EDTA, EGTA, and 1,10-phenanthroline, and the proApCtX enzyme was significantly inhibited by CuSO₄, HgCl₂, CoCl₂, and SDS whereas Triton X-100 and Brij 35 might have potentially acted as an activator. Here, we demonstrated for the first time that the structural features and enzymatic characteristics of Echinoderms cathepsin X are similar to those of the other mammalian and piscine cathepsin X except its pH optimum, and the results of tissue-specific expression might explain their importance in food digestion by hepatic cecain starfish.
Collapse
Affiliation(s)
- Hye Jin Bak
- Department of Biotechnology, Pukyong National University, Busan 608-737, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tayyab M, Rashid N, Angkawidjaja C, Kanaya S, Akhtar M. Highly active metallocarboxypeptidase from newly isolated Geobacillus strain SBS-4S: cloning and characterization. J Biosci Bioeng 2010; 111:259-65. [PMID: 21126910 DOI: 10.1016/j.jbiosc.2010.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 11/29/2022]
Abstract
The carboxypeptidase gene from Geobacillus SBS-4S was cloned and sequenced. The sequence analysis displayed the gene consists of an open reading frame of 1503 nucleotides encoding a protein of 500 amino acids (CBP(SBS)). The amino acid sequence comparison revealed that CBP(SBS) exhibited a highest homology of 41.6% (identity) with carboxypeptidase Taq from Thermus aquaticus among the characterized proteases. CBP(SBS) contained an active site motif (265)HEXXH(269) which is conserved in family-M32 of carboxypeptidases. The gene was expressed with His-Tag utilizing Escherichia coli expression system and purified to apparent homogeneity. The purified CBP(SBS) showed highest activity at pH 7.5 and 70°C. The enzyme activity was metal ion dependent. Among metal ions highest activity was found in the presence of Co(2+). Thermostability studies of CBP(SBS) by circular dichroism spectroscopy demonstrated the melting temperature of the protein around 77°C. The enzyme exhibited K(m) and V(max) values of 14 mM and 10526 μmol min(-1) mg(-1) when carbobenzoxy-alanine-arginine was used as substrate. k(cat) and k(cat)/K(m) valves were 10175 s(-1) and 726 mM(-1) s(-1). To our knowledge this is the highest ever reported enzyme activity of a metallocarboxypeptidase and the first characterization of a metallocarboxypeptidase from genus Geobacillus.
Collapse
Affiliation(s)
- Muhammad Tayyab
- School of Biological Sciences, University of Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | | | | | | | | |
Collapse
|
10
|
Tingaud-Sequeira A, Carnevali O, Cerdà J. Cathepsin B differential expression and enzyme processing and activity during Fundulus heteroclitus embryogenesis. Comp Biochem Physiol A Mol Integr Physiol 2010; 158:221-8. [PMID: 21059400 DOI: 10.1016/j.cbpa.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 12/11/2022]
Abstract
The role of lysosomal proteases such as cathepsin B (Ctsb) and one of the paralogs of cathepsin L (Ctsla) during yolk metabolism in fish oocytes is well established. However, the function of Ctsb during embryogenesis, particularly in marine teleosts, has been poorly documented. In this study, the spatio-temporal expression of Ctsb and Ctsla, their enzymatic activities, and the processing of the Ctsb and its cellular localization, was investigated in developing embryos of the killifish (Fundulus heteroclitus). Both fhctsb and fhctsla transcript levels, as well as cathepsin B- and L-like activities, gradually increased in embryos from the 2-4 cell stage up to 7 days post-fertilization. During the morula to gastrula transition an increase of the active FhCtsb single chain form was followed by a rise in cathepsin B activity, which were apparently regulated by post-transcriptional mechanisms. During neurulation, a 8-fold increase in cathepsin B activity was accompanied by a more moderate increase in cathepsin L activity, which was 6-fold enhanced by 7 dpf. These increased catalytic activities were well-correlated to changes in the electrophoretic pattern of yolk proteins and a strong expression of fhctsb and its protein product in the yolk syncytial layer. The increase of cathepsin B activity was further correlated with an increment of the relative amount of the FhCtsb single and double chain forms, both active forms of FhCtsb. These results suggest that FhCtsb may be involved in the mechanisms underlying the onset of gastrulation in F. heteroclitus embryos, and may play complementary roles with FhCtsla during yolk metabolism.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | | | | |
Collapse
|
11
|
Ahn SJ, Kim NY, Jeon SJ, Sung JH, Je JE, Seo JS, Kim MS, Kim JK, Chung JK, Lee HH. Molecular cloning, tissue distribution and enzymatic characterization of cathepsin X from olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2008; 151:203-12. [PMID: 18674630 DOI: 10.1016/j.cbpb.2008.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/28/2008] [Accepted: 07/07/2008] [Indexed: 11/30/2022]
Abstract
In this study, we have cloned a cDNA encoding for cathepsin X (PoCtX) from the olive flounder, Paralichthys olivaceus. The presence of an HIP motif, which is conserved in the unique cathepsin X family, PoCtX, clearly shows its relation to the cathepsin X group, apart from the cathepsin L or B subfamily. The results of RT-PCR and real-time PCR analyses revealed ubiquitous PoCtX expression in normal and LPS-stimulated tissues. The cDNA encoding for the proenzyme of PoCtX (proPoCtX) was expressed in Escherichia coli as a 57 kDa fusion protein with glutathione S-transferase. Its activity was quantified via the cleavage of the synthetic fluorogenic peptide substrate Z-Phe-Arg-AMC, and the optimal pH for the protease activity was 5. The recombinant proPoCtX was inhibited by antipain and leupeptin. The PoCtX protein from P. olivaceus muscle extracts was purified 9.48-fold via a one-step purification process using a DEAE-Sephagel high performance liquid chromatography (HPLC) column. Western blotting and ELISA were conducted in order to evaluate the reaction ability and detection-specificity of the anti-proPoCtX polyclonal antibody to native PoCtX and recombinant proPoCtX proteins. Our findings indicate that the P. olivaceus cathepsin X is highly conserved within the cathepsin X subfamily in terms of its amino acid sequence, tissue expression, and biochemical activity.
Collapse
Affiliation(s)
- Sang Jung Ahn
- Department of Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|