1
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
2
|
Sahu B, Shrama DD, Jayakumar GC, Madhan B, Zameer F. A review on an imperative by-product: Glycosaminoglycans- A Holistic approach. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
3
|
Mari RDB, Mori GM, Vannucchi FS, Ribeiro LF, Correa CN, Lima SKS, Teixeira L, Sandretti‐Silva G, Nadaline J, Bornschein MR. Relationships of mineralized dermal layer of mountain endemic miniature frogs with climate. J Zool (1987) 2022. [DOI: 10.1111/jzo.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- R. de B. Mari
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
| | - G. M. Mori
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
| | - F. S. Vannucchi
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
| | - L. F. Ribeiro
- Mater Natura – Instituto de Estudos Ambientais Curitiba Paraná Brazil
| | - C. N. Correa
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
| | - S. K. S. Lima
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
| | - L. Teixeira
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
- Mater Natura – Instituto de Estudos Ambientais Curitiba Paraná Brazil
| | - G. Sandretti‐Silva
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
- Mater Natura – Instituto de Estudos Ambientais Curitiba Paraná Brazil
| | - J. Nadaline
- Mater Natura – Instituto de Estudos Ambientais Curitiba Paraná Brazil
- Departamento de Zoologia Universidade Federal do Paraná Curitiba Paraná Brazil
| | - M. R. Bornschein
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
- Mater Natura – Instituto de Estudos Ambientais Curitiba Paraná Brazil
| |
Collapse
|
4
|
Zhu W, Chang L, Zhao T, Wang B, Jiang J. Remarkable metabolic reorganization and altered metabolic requirements in frog metamorphic climax. Front Zool 2020; 17:30. [PMID: 33062031 PMCID: PMC7542913 DOI: 10.1186/s12983-020-00378-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Metamorphic climax is the crucial stage of amphibian metamorphosis responsible for the morphological and functional changes necessary for transition to a terrestrial habitat. This developmental period is sensitive to environmental changes and pollution. Understanding its metabolic basis and requirements is significant for ecological and toxicological research. Rana omeimontis tadpoles are a useful model for investigating this stage as their liver is involved in both metabolic regulation and fat storage. Results We used a combined approach of transcriptomics and metabolomics to study the metabolic reorganization during natural and T3-driven metamorphic climax in the liver and tail of Rana omeimontis tadpoles. The metabolic flux from the apoptotic tail replaced hepatic fat storage as metabolic fuel, resulting in increased hepatic amino acid and fat levels. In the liver, amino acid catabolism (transamination and urea cycle) was upregulated along with energy metabolism (TCA cycle and oxidative phosphorylation), while the carbohydrate and lipid catabolism (glycolysis, pentose phosphate pathway (PPP), and β-oxidation) decreased. The hepatic glycogen phosphorylation and gluconeogenesis were upregulated, and the carbohydrate flux was used for synthesis of glycan units (e.g., UDP-glucuronate). In the tail, glycolysis, β-oxidation, and transamination were all downregulated, accompanied by synchronous downregulation of energy production and consumption. Glycogenolysis was maintained in the tail, and the carbohydrate flux likely flowed into both PPP and the synthesis of glycan units (e.g., UDP-glucuronate and UDP-glucosamine). Fatty acid elongation and desaturation, as well as the synthesis of bioactive lipid (e.g., prostaglandins) were encouraged in the tail during metamorphic climax. Protein synthesis was downregulated in both the liver and tail. The significance of these metabolic adjustments and their potential regulation mechanism are discussed. Conclusion The energic strategy and anabolic requirements during metamorphic climax were revealed at the molecular level. Amino acid made an increased contribution to energy metabolism during metamorphic climax. Carbohydrate anabolism was essential for the body construction of the froglets. The tail was critical in anabolism including synthesizing bioactive metabolites. These findings increase our understanding of amphibian metamorphosis and provide background information for ecological, evolutionary, conservation, and developmental studies of amphibians.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| |
Collapse
|
5
|
Hauser K, Popovic M, Yaparla A, Koubourli DV, Reeves P, Batheja A, Webb R, Forzán MJ, Grayfer L. Discovery of granulocyte-lineage cells in the skin of the amphibianXenopus laevis. Facets (Ott) 2020. [DOI: 10.1139/facets-2020-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ranavirus Frog Virus 3 (FV3) and the chytrid fungus Batrachochytrium dendrobatidis ( Bd) are significant contributors to the global amphibian declines and both pathogens target the amphibian skin. We previously showed that tadpoles and adults of the anuran amphibian Xenopus laevis express notable levels of granulocyte chemokine genes ( cxcl8a and cxcl8b) within their skin and likely possess skin-resident granulocytes. Presently, we show that tadpole and adult X. laevis indeed possess granulocyte-lineage cells within their epidermises that are distinct from their skin mast cells, which are found predominantly in lower dermal layers. These esterase-positive cells responded to (r)CXCL8a and rCXCL8b in a concentration- and CXCR1/CXCR2-dependent manner, possessed polymorphonuclear granulocyte morphology, granulocyte marker surface staining, and exhibited distinct immune gene expression from conventional granulocytes. Our past work indicates that CXCL8b recruits immunosuppressive granulocytes, and here we demonstrated that enriching esterase-positive skin granulocytes with rCXCL8b (but not rCXCL8a) may increase tadpole susceptibility to FV3 and adult frog susceptibility to Bd. Furthermore, pharmacological depletion of skin-resident granulocytes increased tadpole susceptibility to FV3. This manuscript provides new insights into the composition and roles of immune cells within the amphibian skin, which is a critical barrier against pathogenic contributors to the amphibian declines.
Collapse
Affiliation(s)
- Kelsey Hauser
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Milan Popovic
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Daphne V. Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | | | | | - Rose Webb
- Pathology Core Laboratory, George Washington University, Washington, DC 20037, USA
| | - María J. Forzán
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
6
|
da Silva HAM, de Queiroz INL, Francisco JS, Pomin VH, Pavão MSG, de Brito-Gitirana L. Chondroitin sulfate isolated from the secretion of the venom-producing parotoid gland of Brazilian bufonid. Int J Biol Macromol 2019; 124:548-556. [DOI: 10.1016/j.ijbiomac.2018.11.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022]
|
7
|
da Silva HAM, Silva-Soares T, de Brito-Gitirana L. Comparative analysis of the integument of different tree frog species from Ololygon and Scinax genera (Anura: Hylidae). ZOOLOGIA 2017. [DOI: 10.3897/zoologia.34.e20176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Cannizzo SA, Lewbart GA, Westermeyer HD. Intraocular pressure in American Bullfrogs (Rana catesbeiana) measured with rebound and applanation tonometry. Vet Ophthalmol 2017; 20:526-532. [DOI: 10.1111/vop.12463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sarah A. Cannizzo
- Department of Clinical Sciences; College of Veterinary Medicine; North Carolina State University; 1060 William Moore Drive Raleigh NC 27607 USA
| | - Gregory A. Lewbart
- Department of Clinical Sciences; College of Veterinary Medicine; North Carolina State University; 1060 William Moore Drive Raleigh NC 27607 USA
| | - Hans D. Westermeyer
- Department of Clinical Sciences; College of Veterinary Medicine; North Carolina State University; 1060 William Moore Drive Raleigh NC 27607 USA
| |
Collapse
|
9
|
Haslam IS, Roubos EW, Mangoni ML, Yoshizato K, Vaudry H, Kloepper JE, Pattwell DM, Maderson PFA, Paus R. From frog integument to human skin: dermatological perspectives from frog skin biology. Biol Rev Camb Philos Soc 2013; 89:618-55. [DOI: 10.1111/brv.12072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/03/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Iain S. Haslam
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
| | - Eric W. Roubos
- Department of Anatomy; Radboud University Medical Centre; Geert Grooteplein Noord 2, 6525 EZ, Nijmegen P.O. Box 9101, 6500 HB Nijmegen The Netherlands
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti; La Sapienza University of Rome, Piazzale Aldo Moro, 5-00185; Rome Italy
| | - Katsutoshi Yoshizato
- Academic Advisors Office, Synthetic Biology Research Center; Osaka City University Graduate School of Medicine; Osaka Japan
- Phoenixbio Co. Ltd; 3-4-1, Kagamiyama; Higashihiroshima Hiroshima 739-0046 Japan
| | - Hubert Vaudry
- European Institute for Peptide Research; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
- INSERM U-982, CNRS; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
| | - Jennifer E. Kloepper
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| | - David M. Pattwell
- Leahurst Campus, Institute of Learning & Teaching; School of Veterinary Science, University of Liverpool; Neston CH64 7TE U.K
| | | | - Ralf Paus
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| |
Collapse
|
10
|
Baccari GC, Pinelli C, Santillo A, Minucci S, Rastogi RK. Mast Cells in Nonmammalian Vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:1-53. [DOI: 10.1016/b978-0-12-386037-8.00006-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Pelli AA, Cinelli LP, Mourão PAS, de Brito-Gitirana L. Glycosaminoglycans and glycoconjugates in the adult anuran integument (Lithobates catesbeianus). Micron 2010; 41:660-5. [DOI: 10.1016/j.micron.2010.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/04/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
|
12
|
Cinelli LP, Andrade L, Valente AP, Mourão PAS. Sulfated alpha-L-galactans from the sea urchin ovary: selective 6-desulfation as eggs are spawned. Glycobiology 2010; 20:702-9. [PMID: 20147451 DOI: 10.1093/glycob/cwq017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sea urchin eggs are surrounded by a jelly coat, which contains sulfated polysaccharides with unique structures. These molecules are responsible for inducing the species-specific acrosome reaction, an obligatory event for the binding of sperm and fusion with the egg. The mechanism of biosynthesis of these sulfated polysaccharides is virtually unknown. The egg jelly of the sea urchin Echinometra lucunter contains a simple 2-sulfated, 3-linked alpha-L-galactan. Here, we pulse labeled the sea urchin ovary in vitro with (35)S-sulfate to follow the biosynthesis of the sulfated alpha-L-galactan. We found that the ovary contains a 2,6-disulfated, 3-linked alpha-L-galactan, which incorporates (35)S-sulfate more avidly than the 2-sulfated isoform. The 2,6-disulfated alpha-L-galactan was purified by anion exchange chromatography, analyzed by electrophoresis and characterized by 1D and 2D nuclear magnetic resonance spectra. We also investigated the location of the sulfated polysaccharides on the oocytes using histochemical procedures. The stain revealed high amounts of sulfated polysaccharide in mature oocytes and accessory cells. The amount of intracellular sulfated polysaccharides decreased as oocytes are spawned. We speculate that 2,6-disulfated galactan is initially synthesized in the ovary and that 6-sulfate ester is removed when the polysaccharide is secreted into the egg jelly. Similar events related to remodeling of sulfated polysaccharides have been reported in other biological systems.
Collapse
|
13
|
Seminal fluid from sea urchin (Lytechinus variegatus) contains complex sulfated polysaccharides linked to protein. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:108-12. [PMID: 19446650 DOI: 10.1016/j.cbpb.2009.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 11/23/2022]
Abstract
The eggs of sea urchins are covered by a jelly coat, which contains high concentrations of sulfated polysaccharides. These carbohydrates show species-specificity in inducing the sperm acrosome reaction. Several studies about the egg jelly of sea urchins have been published, but there is no information about the composition of the seminal fluid of these echinoderms. Here we report for the first time the occurrence of complex sulfated polysaccharides in the seminal fluid of the sea urchin Lytechinus variegatus. These polysaccharides occur as three fractions that differ mostly in their carbohydrate/protein ratios. The native molecular masses of the polymers are very high (> or = 200 kDa) but, after digestion with papain the size decreases to approximately 8 kDa. All fractions have a similar carbohydrate composition, containing mostly galactose, glucosamine and mannose. The heterogeneous sulfated polysaccharides differ from vertebrate glycosaminoglycans and also from all previously described polysaccharides from invertebrates. The physiological role of the sulfated carbohydrates from seminal fluid is not yet determined. However, by analogy with the effects proposed for some glycoproteins found in vertebrate seminal fluid, it may be possible that the sulfated polysaccharides from invertebrate are also involved in fertilization process.
Collapse
|
14
|
Glycoconjugate histochemistry of mucous glands in the skin of metamorphosing Bufo viridis. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0071-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|