1
|
Huang Y, Wen H, Zhang M, Hu N, Si Y, Li S, He F. The DNA methylation status of MyoD and IGF-I genes are correlated with muscle growth during different developmental stages of Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2018; 219-220:33-43. [PMID: 29486246 DOI: 10.1016/j.cbpb.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023]
Abstract
Many genes related to muscle growth modulate myoblast proliferation and differentiation and promote muscle hypertrophy. MyoD is a myogenic determinant that contributes to myoblast determination, and insulin-like growth factor 1 (IGF-I) interacts with MyoD to regulate muscle hypertrophy and muscle mass. In this study, we aimed to assess DNA methylation and mRNA expression patterns of MyoD and IGF-I during different developmental stages of Japanese flounder, and to examine the relationship between MyoD and IGF-I gene. DNA and RNA were extracted from muscles, and DNA methylation of MyoD and IGF-I promoter and exons was detected by bisulfite sequencing. The relative expression of MyoD and IGF-I was measured by quantitative polymerase chain reaction. IGF-I was measured by radioimmunoassay. Interestingly, the lowest expression of MyoD and IGF-I emerged at larva stage, and the mRNA expression was negatively associated with methylation. We hypothesized that many skeletal muscle were required to complete metamorphosis; thus, the expression levels of MyoD and IGF-I genes increased from larva stage and then decreased. The relative expression levels of MyoD and IGF-I exhibited similar patterns, suggesting that MyoD and IGF-I regulated muscle growth through combined effects. Changes in the concentrations of IGF-I hormone were similar to those of IGF-I gene expression. Our results the mechanism through which MyoD and IGF-I regulate muscle development and demonstrated that MyoD interacted with IGF-I to regulate muscle growth during different developmental stages.
Collapse
Affiliation(s)
- Yajuan Huang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Meizhao Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Nan Hu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yufeng Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Siping Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Feng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Xu D, Liu A, Wang X, Zhang M, Zhang Z, Tan Z, Qiu M. Identifying suitable reference genes for developing and injured mouse CNS tissues. Dev Neurobiol 2017; 78:39-50. [PMID: 29134774 DOI: 10.1002/dneu.22558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
Accurate quantification of gene expression is fundamental for understanding the molecular, genetic and functional bases of tissue development and diseases. Quantitative real-time PCR (qPCR) is now the most widely used method of quantifying gene expression due to its simplicity, specificity, sensitivity, and wide quantification range. The use of appropriate reference genes to ensure accurate normalization is crucial for the correct quantification of gene expression from the early development, maturation, aging to injury processes in the central nervous system (CNS). In this study, we have determined the expression profiles of 12 candidate housekeeping genes (ACTB, CYC1, HMBS, GAPDH, HPRT1, RPL13A, YWHAZ, PPIA, RPLP0, TFRC, GUS, and 18S rRNA) in developing mouse brain and spinal cord. Throughout development, there was a significant degree of fluctuations in their expression levels, indicating the importance and complexity of finding appropriate reference genes. Three software including BestKeeper, geNorm and NormFinder were used to evaluate the stability of potential reference genes. GUS was the most stable gene and GUS/YWHAZ were the most stable reference gene pair across different developmental stages in different CNS regions, whereas HPRT1 and GAPDH were the most variable genes and thus inappropriate to use as reference genes. Therefore, our results identified GUS and YWHAZ as the best combination of two reference genes for expression data normalization in CNS developmental studies. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 39-50, 2018.
Collapse
Affiliation(s)
- Dongchao Xu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Ajuan Liu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Xuan Wang
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Ming Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zunyi Zhang
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Zhou Tan
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY40292
| |
Collapse
|
3
|
Meng Z, Hu P, Lei J, Jia Y. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus). Gen Comp Endocrinol 2016; 235:11-17. [PMID: 27255364 DOI: 10.1016/j.ygcen.2016.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/18/2016] [Accepted: 05/29/2016] [Indexed: 01/31/2023]
Abstract
Insulin-like growth factors I and II (IGF-I and IGF-II) are important regulators of vertebrate growth and development. This study characterized the mRNA expressions of igf-i and igf-ii during turbot (Scophthalmus maximus) metamorphosis to elucidate the possible regulatory role of the IGF system in flatfish metamorphosis. Results showed that the mRNA levels of igf-i significantly increased at the early-metamorphosis stage and then gradually decreased until metamorphosis was completed. By contrast, mRNA levels of igf-ii significantly increased at the pre-metamorphosis stage and then substantially decreased during metamorphosis. Meanwhile, the whole-body thyroxine (T4) levels varied during larval metamorphosis, and the highest value was observed in the climax-metamorphosis. The mRNA levels of igf-i significantly increased and decreased by T4 and thiourea (TU, inhibitor of endogenous thyroid hormone) during metamorphosis, respectively. Conversely, the mRNA levels of igf-ii remained unchanged. Furthermore, TU significantly inhibited the T4-induced mRNA up-regulation of igf-i during metamorphosis. The whole-body thyroxine (T4) levels were significantly increased and decreased by T4 and TU during metamorphosis, respectively. These results suggested that igf-i and igf-ii may play different functional roles in larval development stages, and igf-i may have a crucial function in regulating the early metamorphic development of turbot. These findings may enhance our understanding of the potential roles of the IGF system to control flatfish metamorphosis and contribute to the improvement of broodstock management for larvae.
Collapse
Affiliation(s)
- Zhen Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China
| | - Peng Hu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China
| | - Jilin Lei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China
| | - Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China.
| |
Collapse
|
4
|
Azizi S, Nematollahi MA, Mojazi Amiri B, Vélez EJ, Salmerón C, Chan SJ, Navarro I, Capilla E, Gutiérrez J. IGF-I and IGF-II effects on local IGF system and signaling pathways in gilthead sea bream (Sparus aurata) cultured myocytes. Gen Comp Endocrinol 2016; 232:7-16. [PMID: 26602376 DOI: 10.1016/j.ygcen.2015.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factors (IGFs) have a fundamental role in a vast range of functions acting through a tyrosine-kinase receptor (IGF-IR). IGFs in muscle can affect the expression of components of the local IGF system, myogenic regulatory factors (MRFs), proliferating (proliferating cell nuclear antigen, PCNA) or differentiating molecules (myosin heavy chain, MHC) and, lead to the activation of different signaling pathways. The response of all these genes to IGFs incubation at two different times in day 4 cultured myocytes of gilthead sea bream was analyzed. Both IGFs increased the expression of IGF-I and IGFBP-5, but showed different effects on the receptors, with IGF-I suppressing the expression of both isoforms (IGF-IRa and IGF-IRb) and IGF-II up-regulating only IGF-IRb. Moreover, the protein levels of PCNA and target of rapamycin (TOR) increased after IGF-II incubation, although a decline in Myf5 and a rise in MHC gene expression was caused by IGF-I. Taken together, these results provide evidence for the importance of IGFs on controlling muscle development and growth in gilthead sea bream and suggest that each IGF may be preferentially acting through a specific IGF-IR. Moreover, the data support the hypothesis that IGF-II has a more important role during proliferation, whereas IGF-I seems to be relevant for the differentiation phase of myogenesis.
Collapse
Affiliation(s)
- Sheida Azizi
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran; Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mohammad Ali Nematollahi
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Bagher Mojazi Amiri
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Cristina Salmerón
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Shu Jin Chan
- Departments of Biochemistry, and Molecular Biology and Medicine, The Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
5
|
Vélez EJ, Azizi S, Millán-Cubillo A, Fernández-Borràs J, Blasco J, Chan SJ, Calduch-Giner JA, Pérez-Sánchez J, Navarro I, Capilla E, Gutiérrez J. Effects of sustained exercise on GH-IGFs axis in gilthead sea bream (Sparus aurata). Am J Physiol Regul Integr Comp Physiol 2015; 310:R313-22. [PMID: 26661095 DOI: 10.1152/ajpregu.00230.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/08/2015] [Indexed: 11/22/2022]
Abstract
The endocrine system regulates growth mainly through the growth hormone (GH)/insulin-like growth factors (IGFs) axis and, although exercise promotes growth, little is known about its modulation of these factors. The aim of this work was to characterize the effects of 5 wk of moderate sustained swimming on the GH-IGFs axis in gilthead sea bream fingerlings. Plasma IGF-I/GH ratio and tissue gene expression of total IGF-I and three splice variants, IGF-II, three IGF binding proteins, two GH receptors, two IGF-I receptors, and the downstream molecules were analyzed. Fish under exercise (EX) grew more than control fish (CT), had a higher plasma IGF-I/GH ratio, and showed increased hepatic IGF-I expression (mainly IGF-Ia). Total IGF-I expression levels were similar in the anterior and caudal muscles; however, IGF-Ic expression increased with exercise, suggesting that this splice variant may be the most sensitive to mechanical action. Moreover, IGFBP-5b and IGF-II increased in the anterior and caudal muscles, respectively, supporting enhanced muscle growth. Furthermore, in EX fish, hepatic IGF-IRb was reduced together with both GHRs; GHR-II was also reduced in anterior muscle, while GHR-I showed higher expression in the two muscle regions, indicating tissue-dependent differences and responses to exercise. Exercise also increased gene and protein expression of target of rapamycin (TOR), suggesting enhanced muscle protein synthesis. Altogether, these data demonstrate that moderate sustained activity may be used to increase the plasma IGF-I/GH ratio and to potentiate growth in farmed gilthead sea bream, modulating the gene expression of different members of the GH-IGFs axis (i.e., IGF-Ic, IGF-II, IGFBP-5b, GHR-I, and TOR).
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sheida Azizi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Antonio Millán-Cubillo
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Shu Jin Chan
- Departments of Biochemistry, and Molecular Biology and Medicine, The Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois; and
| | - Josep A Calduch-Giner
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain;
| |
Collapse
|
6
|
Chicano-Gálvez E, Asensio E, Cañavate JP, Alhama J, López-Barea J. Proteomic analysis through larval development ofSolea senegalensisflatfish. Proteomics 2015; 15:4105-19. [DOI: 10.1002/pmic.201500176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/30/2015] [Accepted: 09/09/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Eduardo Chicano-Gálvez
- Department of Biochemistry and Molecular Biology; University of Córdoba (UCO); Córdoba Spain
| | | | | | - José Alhama
- Department of Biochemistry and Molecular Biology; University of Córdoba (UCO); Córdoba Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology; University of Córdoba (UCO); Córdoba Spain
| |
Collapse
|
7
|
Zhang Y, Zhang J, Shi Z, Zhai W, Wang X. Insulin-like growth factor binding protein-2 (IGFBP-2) in Japanese flounder, Paralichthys olivaceus: molecular cloning, expression patterns and hormonal regulation during metamorphosis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1541-1554. [PMID: 23974668 DOI: 10.1007/s10695-013-9807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
In this study, we cloned and characterized cDNA sequences of two insulin-like growth factor binding protein-2 (IGFBP-2a and IGFBP-2b) from Japanese flounder, Paralichthys olivaceus. The full-length cDNA of IGFBP-2a is 1,046 bp long and consists an open frame (ORF) of 876 bp, a 5'-untranslated region (UTR) of 125 bp and a 3'-UTR of 45 bp. IGFBP-2b is 1,067 bp, including a 5'-UTR of 53 bp, a 3'-UTR of 198 bp and an ORF of 816 bp. Real-time quantitative PCR results revealed that IGFBP-2a -2b mRNA was expressed in all detected tissues. Interestingly, the levels of IGFBP-2a mRNA in all detected tissues were higher in female than male, but IGFBP-2b was precisely the opposite. At different embryonic stages, the levels of IGFBP-2a mRNA were typically higher than IGFBP-2b. After hatching, IGFBP-2a mRNA was gradually decreased to a relatively lower level. However, the expression of IGFBP-2b mRNA was increased after hatching, including 3, 7, 10, 14, 17, 20 and 23 days post-hatching (dph), and it presents a higher level until 29 (metamorphic climax), 36 (post-climax) and 41 dph (the end of metamorphosis). In levothyroxine sodium salt (T4, the main form of thyroid hormone in animals)-treated and thiourea (TU)-treated larvae, the expressions of IGFBP-2a had not visibly changed, except in T4-treated 17 dph larvae. The expressions of IGFBP-2b mRNA were distinctly increased from 17 to 23 dph, but suddenly dropped to a lower level in and after 29 dph. However, the levels of IGFBP-2b mRNA during metamorphosis were greatly down-regulated after TU treatment. These results provided basic information for further studies on the role of IGF system in flatfish development and metamorphosis.
Collapse
Affiliation(s)
- Yuntong Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Fuentes EN, Valdés JA, Molina A, Björnsson BT. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system. Gen Comp Endocrinol 2013; 192:136-48. [PMID: 23791761 DOI: 10.1016/j.ygcen.2013.06.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/17/2022]
Abstract
The growth hormone (GH)-insulin-like growth factor (IGF) system is the key promoter of growth in vertebrates; however, how this system modulates muscle mass in fish is just recently becoming elucidated. In fish, the GH induces muscle growth by modulating the expression of several genes belonging to the myostatin (MSTN), atrophy, GH, and IGF systems as well as myogenic regulatory factors (MRFs). The GH controls the expression of igf1 via Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 5 (STAT5) signaling pathway, but it seems that it is not the major regulator. These mild effects of the GH on igf1 expression in fish muscle seem to be related with the presence of higher contents of truncated GH receptor1 (tGHR1) than full length GHR (flGHR1). IGFs in fish stimulate myogenic cell proliferation, differentiation, and protein synthesis through the MAPK/ERK and PI3K/AKT/TOR signaling pathways, concomitant with abolishing protein degradation and atrophy via the PI3K/AKT/FOXO signaling pathway. Besides these signaling pathways control the expression of several genes belonging to the atrophy and IGF systems. Particularly, IGFs and amino acid control the expression of igf1, thus, suggesting other of alternative signaling pathways regulating the transcription of this growth factor. The possible role of IGF binding proteins (IGFBPs) and the contribution of muscle-derived versus hepatic-produced IGF1 on fish muscle growth is also addressed. Thus, a comprehensive overview on the GH-IGF system regulating fish skeletal muscle growth is presented, as well as perspectives for future research in this field.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| | | | | | | |
Collapse
|
9
|
Ferraresso S, Bonaldo A, Parma L, Cinotti S, Massi P, Bargelloni L, Gatta PP. Exploring the larval transcriptome of the common sole (Solea solea L.). BMC Genomics 2013; 14:315. [PMID: 23663263 PMCID: PMC3659078 DOI: 10.1186/1471-2164-14-315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The common sole (Solea solea) is a promising candidate for European aquaculture; however, the limited knowledge of the physiological mechanisms underlying larval development in this species has hampered the establishment of successful flatfish aquaculture. Although the fact that genomic tools and resources are available for some flatfish species, common sole genomics remains a mostly unexplored field. Here, we report, for the first time, the sequencing and characterisation of the transcriptome of S. solea and its application for the study of molecular mechanisms underlying physiological and morphological changes during larval-to-juvenile transition. RESULTS The S. solea transcriptome was generated from whole larvae and adult tissues using the Roche 454 platform. The assembly process produced a set of 22,223 Isotigs with an average size of 726 nt, 29 contigs and a total of 203,692 singletons. Of the assembled sequences, 75.2% were annotated with at least one known transcript/protein; these transcripts were then used to develop a custom oligo-DNA microarray. A total of 14,674 oligonucleotide probes (60 nt), representing 12,836 transcripts, were in situ synthesised onto the array using Agilent non-contact ink-jet technology. The microarray platform was used to investigate the gene expression profiles of sole larvae from hatching to the juvenile form. Genes involved in the ontogenesis of the visual system are up-regulated during the early stages of larval development, while muscle development and anaerobic energy pathways increase in expression over time. The gene expression profiles of key transcripts of the thyroid hormones (TH) cascade and the temporal regulation of the GH/IGF1 (growth hormone/insulin-like growth factor I) system suggest a pivotal role of these pathways in fish growth and initiation of metamorphosis. Pre-metamorphic larvae display a distinctive transcriptomic landscape compared to previous and later stages. Our findings highlighted the up-regulation of gene pathways involved in the development of the gastrointestinal system as well as biological processes related to folic acid and retinol metabolism. Additional evidence led to the formation of the hypothesis that molecular mechanisms of cell motility and ECM adhesion may play a role in tissue rearrangement during common sole metamorphosis. CONCLUSIONS Next-generation sequencing provided a good representation of the sole transcriptome, and the combination of different approaches led to the annotation of a high number of transcripts. The construction of a microarray platform for the characterisation of the larval sole transcriptome permitted the definition of the main processes involved in organogenesis and larval growth.
Collapse
Affiliation(s)
- Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhai W, Zhang J, Shi Z, Fu Y. Identification and expression analysis of IGFBP-1 gene from Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2012; 161:413-20. [PMID: 22290028 DOI: 10.1016/j.cbpb.2012.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 01/03/2023]
Abstract
Insulin-like growth factor binding protein-1 (IGFBP-1) plays an important role in IGF regulating vertebrate growth and development. In this study, we cloned IGFBP-1 cDNA from Japanese flounder (Paralichthys olivaceus) liver. The full-length cDNA is 1070 bp, including a 5'-untranslated region (UTR) of 69 bp, a 3'-UTR of 272 bp, and an open reading frame (ORF) of 729 bp encoding a polypeptide of 242 amino acids. Real-time quantitative PCR revealed that IGFBP-1 mRNA is mainly expressed in the liver, and a small amount of mRNAs was also found in other adult tissues. There are maternal transcripts of IGFBP-1 gene, and relatively low mRNA levels were observed in different embryonic stages. A higher level of IGFBP-1 mRNA was detected at 3 days post hatching (dph), and it got to the highest level at 29 dph (metamorphic climax), and finally brought back to a lower level at the end of metamorphosis. The expression of IGFBP-1 mRNA was greatly up-regulated in thyroid hormone (TH)-treated larvae, and declined after thiourea (TU) treatment. These results provide basic information for further studies on the role of IGF system in the P. olivaceus development and metamorphosis.
Collapse
Affiliation(s)
- Wanying Zhai
- Key laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China
| | | | | | | |
Collapse
|
11
|
Bizuayehu TT, Lanes CFC, Furmanek T, Karlsen BO, Fernandes JMO, Johansen SD, Babiak I. Differential expression patterns of conserved miRNAs and isomiRs during Atlantic halibut development. BMC Genomics 2012; 13:11. [PMID: 22233483 PMCID: PMC3398304 DOI: 10.1186/1471-2164-13-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a major role in animal ontogenesis. Size variants of miRNAs, isomiRs, are observed along with the main miRNA types, but their origin and possible biological role are uncovered yet. Developmental profiles of miRNAs have been reported in few fish species only and, to our knowledge, differential expressions of isomiRs have not yet been shown during fish development. Atlantic halibut, Hippoglossus hippoglossus L., undergoes dramatic metamorphosis during early development from symmetrical pelagic larval stage to unsymmetrical flatfish. No data exist on role of miRNAs in halibut metamorphosis. RESULTS miRNA profiling using SOLiD deep sequencing technology revealed a total of 199 conserved, one novel antisense, and one miRNA* mature form. Digital expression profiles of selected miRNAs were validated using reverse transcription quantitative PCR. We found developmental transition-specific miRNA expression. Expression of some miRNA* exceeded the guide strand miRNA. We revealed that nucleotide truncations and/or additions at the 3' end of mature miRNAs resulted in size variants showing differential expression patterns during the development in a number of miRNA families. We confirmed the presence of isomiRs by cloning and Sanger sequencing. Also, we found inverse relationship between expression levels of sense/antisense miRNAs during halibut development. CONCLUSION Developmental transitions during early development of Atlantic halibut are associated with expression of certain miRNA types. IsomiRs are abundant and often show differential expression during the development.
Collapse
Affiliation(s)
- Teshome T Bizuayehu
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Carlos FC Lanes
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Tomasz Furmanek
- University of Bergen, Department of Biomedicine, Postbox 7804, N-5020 Bergen, Norway
| | - Bård O Karlsen
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Jorge MO Fernandes
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Steinar D Johansen
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
- University of Tromsø, Department of Medical Biology, Faculty of Health Sciences, 9037 Tromsø, Norway
| | - Igor Babiak
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| |
Collapse
|
12
|
Zhang J, Shi Z, Cheng Q, Chen X. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2011; 173:78-85. [PMID: 21596045 DOI: 10.1016/j.ygcen.2011.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 04/22/2011] [Accepted: 04/30/2011] [Indexed: 01/27/2023]
Abstract
Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder.
Collapse
Affiliation(s)
- Junling Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, PR China
| | | | | | | |
Collapse
|
13
|
Mazurais D, Darias M, Zambonino-Infante J, Cahu C. Transcriptomics for understanding marine fish larval development1This review is part of a virtual symposium on current topics in aquaculture of marine fish and shellfish. CAN J ZOOL 2011. [DOI: 10.1139/z11-036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The larval phase is a crucial period in the life of marine fish. During this phase, the organism will acquire the phenotype of an adult fish through the development of tissues and organs and the maturation of some of the principal physiological functions. Many biological processes (differentiation, cellular proliferation, growth, etc.) are regulated during this period. These regulations take place at different biological levels and particularly concern the expression of genes involved in larval ontogenesis processes. The development of bioinformatic resources (DNA or cDNA sequences) and molecular tools enabling high throughput gene expression analysis (microarrays) have allowed the transcriptome of marine fish species to be studied. In the present review, we summarize the main findings from transcriptomic investigations of development of marine fish larvae. Special attention is paid to investigations of transcriptomic patterns during postembryonic development and to the impact of environmental or nutritional factors on the transcriptome of marine fish larvae. Transcriptomic approaches will be especially useful in the future for investigating the effect of temperature and water acidification (or pH) on the development of different fish species in the context of global climate change.
Collapse
Affiliation(s)
- D. Mazurais
- Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Technopole Brest Iroise, BP70, 29280 Plouzané, France
| | - M. Darias
- Investigación y Tecnología Agroalimentarias – Centre de Sant Carles de la Ràpita (IRTA–SCR), Unitat de Cultius Experimentals, Carretera del Poble Nou s/n, 43540 – Sant Carles de la Ràpita, Spain
| | - J.L. Zambonino-Infante
- Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Technopole Brest Iroise, BP70, 29280 Plouzané, France
| | - C.L. Cahu
- Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Technopole Brest Iroise, BP70, 29280 Plouzané, France
| |
Collapse
|
14
|
ZHANG JL, SHI ZY, FU YS, CHENG Q. GENE EXPRESSION AND THYROID HORMONE REGULATED TRANSCRIPT OF IGF-I DURING METAMORPHOSIS OF THE FLOUNDER, PARALICHTHYS OLIVACEUS. ACTA ACUST UNITED AC 2011. [DOI: 10.3724/sp.j.1035.2011.00355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Øvergård AC, Nerland AH, Patel S. Evaluation of potential reference genes for real time RT-PCR studies in Atlantic halibut (Hippoglossus Hippoglossus L.); during development, in tissues of healthy and NNV-injected fish, and in anterior kidney leucocytes. BMC Mol Biol 2010; 11:36. [PMID: 20459764 PMCID: PMC2882370 DOI: 10.1186/1471-2199-11-36] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 05/11/2010] [Indexed: 01/12/2023] Open
Abstract
Background Real time RT-PCR has become an important tool for analyzing gene expression in fish. Although several housekeeping genes have been evaluated in Atlantic halibut (Hippoglossus Hippoglossus L.), appropriate reference genes for low copy mRNA transcripts at the earliest developmental stages have not been identified. No attempts have been reported to identify suitable reference genes in halibut infected with NNV or in stimulated halibut leucocytes. In this study, β-actin1 (ACTB1), elongation factor 1 alpha (EF1A1), hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1), ribosomal protein L7 (RPL7), tubulin beta 2C (Tubb2C), and ubiquitin-conjugating enzyme (UbcE) were evaluated as reference genes for normalization of real time RT-PCR data during Atlantic halibut development, in tissue of healthy and NNV-infected fish, and in in vivo and in vitro stimulated anterior kidney leucocytes. Results The expression of all six genes was relatively stable from the unfertilized egg until 12 day degrees post fertilization (ddpf). However, none of the selected genes were found to be stably expressed throughout halibut development. The mRNA levels of the six genes increased from 18 ddpf, when zygotic transcription is likely to be activated, and stabilized at different time points. The Excel-based software programs BestKeeper, geNorm, and NormFinder ranked EF1A1 and UbcE as the best candidate reference genes before activation of zygotic transcription, and RPL7 and EF1A1 as the best candidates after hatching. EF1A1 and RPL7 were also listed as the best reference genes when exploring the expression levels of the six genes in various halibut organs, both in non-injected fish and in mock- and NNV-injected fish. None of the reference genes were found optimal for normalization of real time RT-PCR data from in vitro stimulated anterior kidney leucocytes. Conclusion Generally, it was found that EF1A1 and RPL7 were the genes that showed least variation, with HPRT1 and UbcE as intermediate genes, and ACTB1 and Tubb2C as the least stable ones. None of the six reference genes can be recommended as reference gene candidates in ConA-PMA stimulated leucocytes. However, UbcE can be a good candidate in other experimental setups. This study emphasizes the need for reference gene evaluation, as universal reference genes have not been identified.
Collapse
|
16
|
Sarropoulou E, Sepulcre P, Poisa-Beiro L, Mulero V, Meseguer J, Figueras A, Novoa B, Terzoglou V, Reinhardt R, Magoulas A, Kotoulas G. Profiling of infection specific mRNA transcripts of the European seabass Dicentrarchus labrax. BMC Genomics 2009; 10:157. [PMID: 19361338 PMCID: PMC2674461 DOI: 10.1186/1471-2164-10-157] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Accepted: 04/10/2009] [Indexed: 11/10/2022] Open
Abstract
Background The European seabass (Dicentrarchus labrax), one of the most extensively cultured species in European aquaculture productions, is, along with the gilthead sea bream (Sparus aurata), a prospective model species for the Perciformes which includes several other commercially important species. Massive mortalities may be caused by bacterial or viral infections in intensive aquaculture production. Revealing transcripts involved in immune response and studying their relative expression enhances the understanding of the immune response mechanism and consequently also the creation of vaccines. The analysis of expressed sequence tags (EST) is an efficient and easy approach for gene discovery, comparative genomics and for examining gene expression in specific tissues in a qualitative and quantitative way. Results Here we describe the construction, analysis and comparison of a total of ten cDNA libraries, six from different tissues infected with V. anguillarum (liver, spleen, head kidney, gill, peritoneal exudates and intestine) and four cDNA libraries from different tissues infected with Nodavirus (liver, spleen, head kidney and brain). In total 9605 sequences representing 3075 (32%) unique sequences (set of sequences obtained after clustering) were obtained and analysed. Among the sequences several immune-related proteins were identified for the first time in the order of Perciformes as well as in Teleostei. Conclusion The present study provides new information to the Gene Index of seabass. It gives a unigene set that will make a significant contribution to functional genomic studies and to studies of differential gene expression in relation to the immune system. In addition some of the potentially interesting genes identified by in silico analysis and confirmed by real-time PCR are putative biomarkers for bacterial and viral infections in fish.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology and Genetics, Hellenic Center of Marine Research, Iraklio, Crete, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Power DM, Einarsdóttir IE, Pittman K, Sweeney GE, Hildahl J, Campinho MA, Silva N, Sæle Ø, Galay-Burgos M, Smáradóttir H, Björnsson BT. The Molecular and Endocrine Basis of Flatfish Metamorphosis. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802325377] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Hagen Ø, Fernandes JMO, Solberg C, Johnston IA. Expression of growth-related genes in muscle during fasting and refeeding of juvenile Atlantic halibut, Hippoglossus hippoglossus L. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:47-53. [PMID: 18835458 DOI: 10.1016/j.cbpb.2008.09.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 12/17/2022]
Abstract
The aim of this study was to establish a fasting-refeeding protocol to investigate the expression of growth-related genes during the transition between catabolic and anabolic states in Atlantic halibut (Hippoglossus hippoglossus L.). Juveniles of approximately 950 g were maintained at ambient temperature (5-8 degrees C) until the 1st of May, then fasted for two months and refed for two months at 7.7-8.0 degrees C under continuous low light. Fast epaxial myotomal muscle was sampled at -64 d (days), -38 d, 0 d (start of refeeding), 3 d, 7 d, 14 d, 30 d and 60 d. Average body mass was unchanged over the fasting period but increased by 24.4% following 60 d refeeding. qPCR was used to analyse the stability of expression of five potential reference genes (Eef2, Fau, 18SrRNA, Actb and Tubb2) with GeNorm and Normfinder. Expression of the growth-related genes, cathepsin B (ctsb), cathepsin D (ctsd), insulin-like growth factor-I and II (IGF-I and II) and insulin-like growth factor-I receptor 1a (IGF-IRa) was normalised using the geometric average of the two most stable housekeeping genes, Fau and 18SrRNA. IGF-I mRNA showed a transient 2.6-fold increase in abundance with refeeding at 7 d whilst transcripts for IGF-II and IGF-IRa were elevated during fasting and decreased 3.8-fold and 3-fold between the 0 d and 3 d samples respectively. Ctsb expression increased between -64 d and 0 d and then decreased approximately 10-fold by 14 d refeeding. In contrast, ctsd was relatively unaffected by the fasting-refeeding cycle, showing a modest (approximately 35%) transient decrease in expression between the 0 d and 30 d refeeding samples. It was concluded that the experimental protocol adopted and housekeeping genes identified were suitable for investigating the catabolic-anabolic transition in halibut skeletal muscle.
Collapse
Affiliation(s)
- Ørjan Hagen
- School of Biology, University of St Andrews, St Andrews, Scotland, UK.
| | | | | | | |
Collapse
|
19
|
Involvement of growth hormone-insulin-like growth factor I system in cranial remodeling during halibut metamorphosis as indicated by tissue- and stage-specific receptor gene expression and the presence of growth hormone receptor protein. Cell Tissue Res 2008; 332:211-25. [DOI: 10.1007/s00441-007-0568-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 12/19/2007] [Indexed: 12/13/2022]
|
20
|
Fernandes JMO, Mommens M, Hagen O, Babiak I, Solberg C. Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:23-32. [PMID: 18302990 DOI: 10.1016/j.cbpb.2008.01.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 12/16/2022]
Abstract
Gene expression studies are fundamental to understand the molecular basis of severe malformations in fish development, particularly under aquaculture conditions. Real-time PCR (qPCR) is the most accurate method of quantifying gene expression, provided that suitable endogenous controls are used to normalize the data. To date, no reference genes have been validated for developmental gene expression studies in Atlantic halibut (Hippoglossus hippoglossus). We have determined the expression profiles of 6 candidate reference genes (Actb, Eef2, Fau, Gapdh, Tubb2 and 18S rRNA) in 6 embryonic and 5 larval stages of Atlantic halibut development. There were significant changes in expression levels throughout development, which stress the importance and complexity of finding appropriate reference genes. The three software applications (BestKeeper, geNorm and NormFinder) used to evaluate the stability of potential reference genes produced comparable results. Tubb2 and Actb were the most stable genes across the different developmental stages, whereas 18S rRNA and Gapdh were the most variable genes and thus inappropriate to use as reference genes. According to geNorm and NormFinder, the best two-gene normalization factors corresponded to the geometric average of Tubb2/Actb and Tbb2/Fau, respectively. We believe that either of these normalization factors can be used for future developmental gene expression studies in Atlantic halibut.
Collapse
Affiliation(s)
- Jorge M O Fernandes
- Department of Fisheries and Natural Sciences, Bodø Regional University, N-8049 Bodø, Norway.
| | | | | | | | | |
Collapse
|