1
|
Increased polyamine levels and maintenance of γ-aminobutyric acid (Gaba) homeostasis in the gills is indicative of osmotic plasticity in killifish. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110969. [PMID: 33915271 DOI: 10.1016/j.cbpa.2021.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022]
Abstract
The Fundulus genus of killifish includes species that inhabit marshes along the U.S. Atlantic coast and the Gulf of Mexico, but differ in their ability to adjust rapidly to fluctuations in salinity. Previous work suggests that euryhaline killifish stimulate polyamine biosynthesis and accumulate putrescine in the gills during acute hypoosmotic challenge. Despite evidence that polyamines have an osmoregulatory role in euryhaline killifish species, their function in marine species is unknown. Furthermore, the consequences of hypoosmotic-induced changes in polyamine synthesis on downstream pathways, such as ƴ-aminobutyric acid (Gaba) production, have yet to be explored. Here, we examined the effects of acute hypoosmotic exposure on polyamine, glutamate, and Gaba levels in the gills of a marine (F. majalis) and two euryhaline killifish species (F. heteroclitus and F. grandis). Fish acclimated to 32 ppt or 12 ppt water were transferred to fresh water, and concentrations of glutamate (Glu), Gaba, and the polyamines putrescine (Put), spermidine (Spd), and spermine (Spm) were measured in the gills using high-performance liquid chromatography. F. heteroclitus and F. grandis exhibited an increase in gill Put concentration, but showed no change in Glu or Gaba levels following freshwater transfer. F. heteroclitus also accumulated Spd in the gills, whereas F. grandis showed transient increases in Spd and Spm levels. In contrast, gill Put, Spm, Glu, and Gaba levels decreased in F. majalis following freshwater transfer. Together, these findings suggest that increasing polyamine levels and maintaining Glu and Gaba levels in the gills may enable euryhaline teleosts to acclimate to shifts in environmental salinity.
Collapse
|
2
|
Zhgun A, Dumina M, Valiakhmetov A, Eldarov M. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum. PLoS One 2020; 15:e0238452. [PMID: 32866191 PMCID: PMC7458343 DOI: 10.1371/journal.pone.0238452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/16/2020] [Indexed: 11/19/2022] Open
Abstract
The filamentous fungus Acremonium chrysogenum is the main industrial producer of cephalosporin C (CPC), one of the major precursors for manufacturing of cephalosporin antibiotics. The plasma membrane H+-ATPase (PMA) plays a key role in numerous fungal physiological processes. Previously we observed a decrease of PMA activity in A. chrysogenum overproducing strain RNCM 408D (HY) as compared to the level the wild-type strain A. chrysogenum ATCC 11550. Here we report the relationship between PMA activity and CPC biosynthesis in A. chrysogenum strains. The elevation of PMA activity in HY strain through overexpression of PMA1 from Saccharomyces cerevisiae, under the control of the constitutive gpdA promoter from Aspergillus nidulans, results in a 1.2 to 10-fold decrease in CPC production, shift in beta-lactam intermediates content, and is accompanied by the decrease in cef genes expression in the fermentation process; the characteristic colony morphology on agar media is also changed. The level of PMA activity in A. chrysogenum HY OE::PMA1 strains has been increased by 50–100%, up to the level observed in WT strain, and was interrelated with ATP consumption; the more PMA activity is elevated, the more ATP level is depleted. The reduced PMA activity in A. chrysogenum HY strain may be one of the selected events during classical strain improvement, aimed at elevating the ATP content available for CPC production.
Collapse
Affiliation(s)
- Alexander Zhgun
- Research Center of Biotechnology RAS, Moscow, Russia
- * E-mail:
| | - Mariya Dumina
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Ayrat Valiakhmetov
- Skryabin Institute of Biophysics and Physiology of Microorganisms, RAS, Pushchino, Russia
| | | |
Collapse
|
3
|
Lucena MN, Garçon DP, Fontes CFL, Fabri LM, Moraes CM, McNamara JC, Leone FA. Dopamine binding directly up-regulates (Na +, K +)-ATPase activity in the gills of the freshwater shrimp Macrobrachium amazonicum. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:39-47. [PMID: 30936021 DOI: 10.1016/j.cbpa.2019.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/11/2023]
Abstract
We examined the effects of exogenous dopamine on gill (Na+, K+)-ATPase activity in vitro in microsomal preparations from juvenile or adult freshwater shrimp, Macrobrachium amazonicum. Dopamine had no effect on enzyme activity in juveniles but stimulated activity in adult shrimp gills by ≈35%. Stimulation of the gill (Na+, K+)-ATPase in adult shrimps by 100 mmol L-1 dopamine was characterized kinetically by varying ATP, MgATP, and Na+ and K+ concentrations, together with inhibition by ouabain. Dopamine stimulated ATP hydrolysis by ≈40% obeying Michaelis-Menten kinetics, reaching VM = 190.5 ± 15.7 nmol Pi min-1 mg-1 protein, KM remaining unaltered. Stimulation by Na+ (≈50%) and K+ (≈25%) revealed distinct kinetic profiles: although KM values were similar, Na+ stimulation followed cooperative kinetics, contrasting with the Michaelian kinetics seen for K+. Stimulation by MgATP increased activity by ≈30% with little change in KM. Similar saturation profiles were seen for ouabain inhibition with very similar calculated KI values. Our findings suggest that dopamine may be involved in hemolymph sodium homeostasis by directly binding to the gill (Na+, K+)-ATPase at a site different from ouabain, thus stimulating enzyme activity in an ontogenetic stage-specific manner. However, dopamine binding does not affect enzyme affinity for cations and ouabain. This is the first report of the direct action of dopamine in stimulating the crustacean gill (Na+, K+)-ATPase.
Collapse
Affiliation(s)
- Malson N Lucena
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, SP, Brazil
| | - Daniela P Garçon
- Campus Universitário de Iturama, Universidade Federal do Triângulo Mineiro, 38280-000, MG, Brazil
| | - Carlos F L Fontes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Leonardo M Fabri
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, SP, Brazil
| | - Cintya M Moraes
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, SP, Brazil
| | - John C McNamara
- Departamento de Biologia - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, SP, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, SP, Brazil
| | - Francisco A Leone
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, SP, Brazil.
| |
Collapse
|
4
|
Killiny N. Generous hosts: Why the larvae of greater wax moth, Galleria mellonella is a perfect infectious host model? Virulence 2018; 9:860-865. [PMID: 29726300 PMCID: PMC5955462 DOI: 10.1080/21505594.2018.1454172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nabil Killiny
- a Citrus Research and Education Center, Department of Plant Pathology, IFAS , University of Florida , Lake Alfred , Florida , United States of America
| |
Collapse
|
5
|
Polyamines regulate phosphorylation–dephosphorylation kinetics in a crustacean gill (Na+, K+)-ATPase. Mol Cell Biochem 2017; 429:187-198. [DOI: 10.1007/s11010-017-2946-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
|
6
|
Mobarhan YL, Fortier-McGill B, Soong R, Maas WE, Fey M, Monette M, Stronks HJ, Schmidt S, Heumann H, Norwood W, Simpson AJ. Comprehensive multiphase NMR applied to a living organism. Chem Sci 2016; 7:4856-4866. [PMID: 30155133 PMCID: PMC6016732 DOI: 10.1039/c6sc00329j] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/17/2016] [Indexed: 12/23/2022] Open
Abstract
Comprehensive multiphase (CMP) NMR is a novel technology that integrates all the hardware from solution-, gel- and solid-state into a single NMR probe, permitting all phases to be studied in intact samples. Here comprehensive multiphase (CMP) NMR is used to study all components in a living organism for the first time. This work describes 4 new scientific accomplishments summarized as: (1) CMP-NMR is applied to a living animal, (2) an effective method to deliver oxygen to the organisms is described which permits longer studies essential for in-depth NMR analysis in general, (3) a range of spectral editing approaches are applied to fully differentiate the various phases solutions (metabolites) through to solids (shell) (4) 13C isotopic labelling and multidimensional NMR are combined to provide detailed assignment of metabolites and structural components in vivo. While not explicitly studied here the multiphase capabilities of the technique offer future possibilities to study kinetic transfer between phases (e.g. nutrient assimilation, contaminant sequestration), molecular binding at interfaces (e.g. drug or contaminant binding) and bonding across and between phases (e.g. muscle to bone) in vivo. Future work will need to focus on decreasing the spinning speed to reduce organism stress during analysis.
Collapse
Affiliation(s)
- Yalda Liaghati Mobarhan
- Department of Physical and Environmental Science , University of Toronto , 1265 Military Trail , Toronto , ON , Canada M1C 1A4 .
| | - Blythe Fortier-McGill
- Department of Physical and Environmental Science , University of Toronto , 1265 Military Trail , Toronto , ON , Canada M1C 1A4 .
| | - Ronald Soong
- Department of Physical and Environmental Science , University of Toronto , 1265 Military Trail , Toronto , ON , Canada M1C 1A4 .
| | - Werner E Maas
- Bruker BioSpin Corp. , 15 Fortune Drive , Billerica , Massachusetts , USA 01821-3991
| | - Michael Fey
- Bruker BioSpin Corp. , 15 Fortune Drive , Billerica , Massachusetts , USA 01821-3991
| | - Martine Monette
- Bruker BioSpin Canada , 555 Steeles Avenue East , Milton , ON , Canada L9T 1Y6
| | - Henry J Stronks
- Bruker BioSpin Canada , 555 Steeles Avenue East , Milton , ON , Canada L9T 1Y6
| | | | | | - Warren Norwood
- Environment Canada , 867 Lakeshore Rd. , Burlington , ON , Canada L7R 4A6
| | - André J Simpson
- Department of Physical and Environmental Science , University of Toronto , 1265 Military Trail , Toronto , ON , Canada M1C 1A4 .
| |
Collapse
|
7
|
Leone FA, Garçon DP, Lucena MN, Faleiros RO, Azevedo SV, Pinto MR, McNamara JC. Gill-specific (Na+, K+)-ATPase activity and α-subunit mRNA expression during low-salinity acclimation of the ornate blue crab Callinectes ornatus (Decapoda, Brachyura). Comp Biochem Physiol B Biochem Mol Biol 2015; 186:59-67. [DOI: 10.1016/j.cbpb.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022]
|
8
|
Identification of a crab gill FXYD2 protein and regulation of crab microsomal Na,K-ATPase activity by mammalian FXYD2 peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2588-97. [DOI: 10.1016/j.bbamem.2012.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 01/20/2023]
|
9
|
Spermidine decreases Na⁺,K⁺-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats. Eur J Pharmacol 2012; 684:79-86. [PMID: 22497998 DOI: 10.1016/j.ejphar.2012.03.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/19/2012] [Accepted: 03/23/2012] [Indexed: 11/22/2022]
Abstract
Spermidine is an endogenous polyamine with a polycationic structure present in the central nervous system of mammals. Spermidine regulates biological processes, such as Ca(2+) influx by glutamatergic N-methyl-d-aspartate receptor (NMDA receptor), which has been associated with nitric oxide synthase (NOS) and cGMP/PKG pathway activation and a decrease of Na(+),K(+)-ATPase activity in rats' cerebral cortex synaptosomes. Na(+),K(+)-ATPase establishes Na(+) and K(+) gradients across membranes of excitable cells and by this means maintains membrane potential and controls intracellular pH and volume. However, it has not been defined whether spermidine modulates Na(+),K(+)-ATPase activity in the hippocampus. In this study we investigated whether spermidine alters Na(+),K(+)-ATPase activity in slices of hippocampus from rats, and possible underlying mechanisms. Hippocampal slices and homogenates were incubated with spermidine (0.05-10 μM) for 30 min. Spermidine (0.5 and 1 μM) decreased Na(+),K(+)-ATPase activity in slices, but not in homogenates. MK-801 (100 and 10 μM), a non-competitive antagonist of NMDA receptor, arcaine (0.5μM), an antagonist of the polyamine binding site at the NMDA receptor, and L-NAME (100μM), a NOS inhibitor, prevented the inhibitory effect of spermidine (0.5 μM). ODQ (10 μM), a guanylate cyclase inhibitor, and KT5823 (2 μM), a protein kinase G inhibitor, also prevented the inhibitory effect of spermidine on Na(+),K(+)-ATPase activity. Spermidine (0.5 and 1.0 μM) increased NO(2) plus NO(3) (NOx) levels in slices, and MK-801 (100 μM) and arcaine (0.5 μM) prevented the effect of spermidine (0.5 μM) on the NOx content. These results suggest that spermidine-induced decrease of Na(+),K(+)-ATPase activity involves NMDA receptor/NOS/cGMP/PKG pathway.
Collapse
|
10
|
Garçon DP, Lucena MN, França JL, McNamara JC, Fontes CFL, Leone FA. Na⁺,K⁺-ATPase activity in the posterior gills of the blue crab, Callinectes ornatus (Decapoda, Brachyura): modulation of ATP hydrolysis by the biogenic amines spermidine and spermine. J Membr Biol 2011; 244:9-20. [PMID: 21972069 DOI: 10.1007/s00232-011-9391-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/11/2011] [Indexed: 11/24/2022]
Abstract
We investigated the effect of the exogenous polyamines spermine, spermidine and putrescine on modulation by ATP, K⁺, Na⁺, NH₄⁺ and Mg²⁺ and on inhibition by ouabain of posterior gill microsomal Na⁺,K⁺-ATPase activity in the blue crab, Callinectes ornatus, acclimated to a dilute medium (21‰ salinity). This is the first kinetic demonstration of competition between spermine and spermidine for the cation sites of a crustacean Na⁺,K⁺-ATPase. Polyamine inhibition is enhanced at low cation concentrations: spermidine almost completely inhibited total ATPase activity, while spermine inhibition attained 58%; putrescine had a negligible effect on Na⁺,K⁺-ATPase activity. Spermine and spermidine affected both V and K for ATP hydrolysis but did not affect ouabain-insensitive ATPase activity. ATP hydrolysis in the absence of spermine and spermidine obeyed Michaelis-Menten behavior, in contrast to the cooperative kinetics seen for both polyamines. Modulation of V and K by K⁺, Na⁺, NH₄⁺ and Mg²⁺ varied considerably in the presence of spermine and spermidine. These findings suggest that polyamine inhibition of Na⁺,K⁺-ATPase activity may be of physiological relevance to crustaceans that occupy habitats of variable salinity.
Collapse
Affiliation(s)
- Daniela P Garçon
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo, Ribeirão Preto, Avenida Bandeirantes 3900, Ribeirão Preto, SP 14040-901, Brazil
| | | | | | | | | | | |
Collapse
|