1
|
Muhlia-Almazán AT, Fernández-Gimenez AV. Understanding the Digestive Peptidases from Crustaceans: from Their Biochemical Basis and Classical Perspective to the Biotechnological Approach. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:480-491. [PMID: 35384610 DOI: 10.1007/s10126-022-10122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Scientific studies about decapod crustaceans' digestive physiology have increased, being an important topic with novel results in the last years. This revision aims to show how the study of crustacean peptidases has evolved, from the classical biochemical characterization studies to the assessment of their usefulness in biotechnological and industrial processes, with emphasis on commercial species of interest to world aquaculture and fisheries. First studies determined the proteolytic activity of the midgut gland crude extracts and evaluated the optimum biochemical properties of specific enzymes. Peptidase's identity was determined using inhibitors and specific protein substrates on tube tests and electrophoresis gels. Later, various studies focused on the characterization of purified peptidases and their gene expression. Recently, the integrated mechanisms of enzyme participation during the digestive process of food protein have been established using novel techniques. Scientific research has revealed some of the potential biotechnological applications of crustacean peptidases in the food industry and other processes. However, the knowledge field is enormous, and there is much to explore and study in the coming years.
Collapse
Affiliation(s)
- Adriana Teresita Muhlia-Almazán
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Hermosillo, Carretera Gustavo Enrique Astiazarán Rosas 46, ZP 83304, Hermosillo, Sonora, México
| | - Analía Verónica Fernández-Gimenez
- Instituto de Investigaciones Marinas y Costeras (IIMyC) , Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, ZP 7600, Mar del Plata, Argentina.
| |
Collapse
|
2
|
Camila A, Mariano GC, Alejandra LM. Prejuveniles of Mugil liza (Actinopterygii; Fam. Mugilidae) show digestive and metabolic flexibility upon different postprandial times and refeeding. J Comp Physiol B 2022; 192:561-573. [PMID: 35513525 DOI: 10.1007/s00360-022-01438-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Many animals face periods of feeding restrictions implying fasting and refeeding. The determination of digestive/metabolic and body condition parameters at different times of food deprivation and after refeeding allows to evaluate the postprandial dynamics, the transition from feeding to fasting and the capacity to reverse digestive and metabolic alterations. In spite of its physiological importance, studies on estuarine-dependent detritivore fish are lacking. We determined total mass (TM), relative intestine length (RIL), hepatosomatic index (HSI), digestive enzymes activities in the intestine and energy reserves in liver and muscle at 0, 24, 72, 144 and 240 h after feeding and at 72 h after refeeding in prejuveniles of Mugil liza (Mugilidae) as a model species. After feeding, a decrease occurred in: TM (144 h, 25%), RIL (144 h, 23%); amylase and maltase (72 h, 45 and 35%), sucrase (24 h, 40%) and lipase (24 h, 70%) in intestine; glycogen and free glucose (72 h, 90 and 92%) in liver. In muscle, glycogen (72-144 h) and free glucose (144 h) (170% and 165%, respectively) peak increased; triglycerides decreased at 24-240 h (50%). After refeeding TM, RIL, carbohydrases activities in intestine, glycogen and free glucose in liver were recovered. In muscle, glycogen and free glucose were similar to 0 h; lipase activity and triglycerides were not recovered. Trypsin and APN in intestine, triglycerides in liver, protein in liver and muscle and HSI did not change. The differential modulation of key components of carbohydrates and lipid metabolism after feeding/refeeding would allow to face fasting and recover body condition. Our results improve lacking knowledge about digestive and metabolic physiology of detritivore fish.
Collapse
Affiliation(s)
- Albanesi Camila
- Grupo Fisiología Bioquímica, Integrativa y Adaptativa, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata CONICET-FCEyN, Funes 3250, 7600, Mar del Plata, Argentina
| | - González-Castro Mariano
- Grupo Fisiología Bioquímica, Integrativa y Adaptativa, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata CONICET-FCEyN, Funes 3250, 7600, Mar del Plata, Argentina
| | - López-Mañanes Alejandra
- Grupo Fisiología Bioquímica, Integrativa y Adaptativa, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata CONICET-FCEyN, Funes 3250, 7600, Mar del Plata, Argentina.
| |
Collapse
|
3
|
Toward a More Comprehensive View of α-Amylase across Decapods Crustaceans. BIOLOGY 2021; 10:biology10100947. [PMID: 34681046 PMCID: PMC8533441 DOI: 10.3390/biology10100947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Decapod crustaceans are a very diverse group and have evolved to suit a wide variety of diets. Alpha-amylases enzymes, responsible for starch and glycogen digestion, have been more thoroughly studied in herbivore and omnivore than in carnivorous species. We used information on the α-amylase of a carnivorous lobster as a connecting thread to provide a more comprehensive view of α-amylases across decapods crustaceans. Omnivorous crustaceans such as shrimps, crabs, and crayfish present relatively high amylase activity with respect to carnivorous crustaceans. Yet, contradictory results have been obtained and relatively high activity in some carnivores has been suggested to be a remnant trait from ancestor species. Here, we provided information sustaining that high enzyme sequence and overall architecture conservation do not allow high changes in activity, and that differences among species may be more related to number of genes and isoforms, as well as transcriptional and secretion regulation. However, recent evolutionary analyses revealed that positive selection might have also occurred among distant lineages with feeding habits as a selection force. Some biochemical features of decapod α-amylases can be related with habitat or gut conditions, while less clear patterns are observed for other enzyme properties. Likewise, while molt cycle variations in α-amylase activity are rather similar among species, clear relationships between activity and diet shifts through development cannot be always observed. Regarding the adaptation of α-amylase to diet, juveniles seem to exhibit more flexibility than larvae, and it has been described variation in α-amylase activity or number of isoforms due to the source of carbohydrate and its level in diets, especially in omnivore species. In the carnivorous lobster, however, no influence of the type of carbohydrate could be observed. Moreover, lobsters were not able to fine-regulate α-amylase gene expression in spite of large changes in carbohydrate content of diet, while retaining some capacity to adapt α-amylase activity to very low carbohydrate content in the diets. In this review, we raised arguments for the need of more studies on the α-amylases of less studied decapods groups, including carnivorous species which rely more on dietary protein and lipids, to broaden our view of α-amylase in decapods crustaceans.
Collapse
|
4
|
Vogt G. Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion. ZOOLOGY 2021; 147:125945. [PMID: 34217027 DOI: 10.1016/j.zool.2021.125945] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/09/2023]
Abstract
The ∼15.000 decapod crustaceans that are mostly omnivorous have evolved a structurally and functionally complex digestive system. They have highly effective cuticular chewing and filtering structures in the stomach, which are regularly renewed by moulting. Decapods produce a broad range of digestive enzymes including chitinases, cellulases, and collagenases with unique properties. These enzymes are synthesized in the F-cells of the hepatopancreas and are encoded in the genome as pre-pro-proteins. In contrast to mammals, they are stored in a mature form in the lumen of the stomach to await the next meal, and therefore, the enzymes are particularly stable. The fat emulsifiers are fatty acyl-dipeptides rather than bile salts. After mechanical and chemical processing of the food in the cardiac stomach, the chyme is filtered by two unique filter systems of different mesh-size. The filtrate is then transferred to the hepatopancreas where the nutrients are absorbed by the R-cells, mostly via carriers, resembling nutrient absorption in the small intestine of mammals. The absorbed nutrients are used to fuel the metabolism of the hepatopancreas, are supplied to other organs, and are stored in the R-cells as glycogen and lipid reserves. Export lipids are secreted from the R-cells into the haemolymph as high density lipoproteins that mainly consist of phospholipids. In contrast to mammals, the midgut tube and hindgut contribute only little to food processing and nutrient absorption. The oesophagus, stomach and hindgut are well innervated but the hepatopancreas lacks nerves. Hormone cells are abundant in the midgut and hepatopancreas epithelia. Microorganisms are often present in the intestine of decapods, but they are apparently not essential for digestion and nutrition.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Chávez-Rodríguez L, Rodríguez-Viera L, Montero-Alejo V, Perdomo-Morales R, Mancera JM, Perera E. A Very Active α-Amylase and an Inhibitor-Based
Control of Proteinases Are Key Features of Digestive Biochemistry
of the Omnivorous Caribbean King Crab Maguimithrax
spinosissimus. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020060083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Perera E, Rodriguez-Viera L, Montero-Alejo V, Perdomo-Morales R. Crustacean Proteases and Their Application in Debridement. Trop Life Sci Res 2020; 31:187-209. [PMID: 32922675 PMCID: PMC7470474 DOI: 10.21315/tlsr2020.31.2.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Digestive proteases from marine organisms have been poorly applied to biomedicine. Exceptions are trypsin and other digestive proteases from a few cold-adapted or temperate fish and crustacean species. These enzymes are more efficient than enzymes from microorganism and higher vertebrates that have been used traditionally. However, the biomedical potential of digestive proteases from warm environment species has received less research attention. This review aims to provide an overview of this unrealised biomedical potential, using the debridement application as a paradigm. Debridement is intended to remove nonviable, necrotic and contaminated tissue, as well as fibrin clots, and is a key step in wound treatment. We discuss the physiological role of enzymes in wound healing, the use of exogenous enzymes in debridement, and the limitations of cold-adapted enzymes such as their poor thermal stability. We show that digestive proteases from tropical crustaceans may have advantages over their cold-adapted counterparts for this and similar uses. Differences in thermal stability, auto-proteolytic stability, and susceptibility to proteinase inhibitors are discussed. Furthermore, it is proposed that the feeding behaviour of the source organism may direct the evaluation of enzymes for particular applications, as digestive proteases have evolved to fill a wide variety of feeding habitats, natural substrates, and environmental conditions. We encourage more research on the biomedical application of digestive enzymes from tropical marine crustaceans.
Collapse
Affiliation(s)
- Erick Perera
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Valencia, Spain
| | | | - Vivian Montero-Alejo
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Rolando Perdomo-Morales
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| |
Collapse
|
7
|
Del Monte-Martínez A, González-Bacerio J, Varela CM, Vega-Villasante F, Lalana-Rueda R, Nolasco H, Díaz J, Guisán JM. Screening and Immobilization of Interfacial Esterases from Marine Invertebrates as Promising Biocatalyst Derivatives. Appl Biochem Biotechnol 2019; 189:903-918. [PMID: 31144254 DOI: 10.1007/s12010-019-03036-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
Interfacial esterases are useful enzymes in bioconversion and racemic mixture resolution processes. Marine invertebrates are few explored potential sources of these proteins. In this work, aqueous extracts of 41 species of marine invertebrates were screened for esterase, lipase, and phospholipase A activities, being all positive. Five extracts (Stichodactyla helianthus, Condylactis gigantea, Stylocheilus longicauda, Zoanthus pulchellus, and Plexaura homomalla) were selected for their activity values and immobilized on Octyl-Sepharose CL 4B support by interfacial adsorption. The selectivity of this immobilization method for interfacial esterases was evidenced by immobilization percentages ≥ 94% in almost all cases for lipase and phospholipase A activities. Six pharmaceutical-relevant esters (phenylethyl butyrate, ethyl-2-hydroxy-4-phenyl-butanoate, 2-oxyranylmethyl acetate (glycidol acetate), 7-aminocephalosporanic acid, methyl-prostaglandin F2α, and methyl-6-metoxy-α-methyl-2-naphtalen-acetate -naproxen methyl ester-) were bioconverted by at least three of these biocatalysts, with the lowest conversion percentage of 24%. In addition, three biocatalysts were used in the racemic mixture resolution of three previous compounds. The S. helianthus-derived biocatalyst showed the highest enantiomeric ratios for glycidol acetate (2.67, (S)-selective) and naproxen methyl ester (8.32, (R)-selective), and the immobilized extract of S. longicauda was the most resolutive toward the ethyl-2-hydroxy-4-phenyl-butanoate (8.13, (S)-selective). These results indicate the relevance of such marine interfacial esterases as immobilized biocatalysts for the pharmaceutical industry.
Collapse
Affiliation(s)
- Alberto Del Monte-Martínez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455 entre I y J, Vedado, Havana, Cuba.
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455 entre I y J, Vedado, Havana, Cuba.,Departamento de Bioquímica, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, Vedado, 10400, Havana, Cuba
| | - Carlos M Varela
- Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA.,Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Fernando Vega-Villasante
- Centro Universitario de La Costa, Universidad de Guadalajara, Av. Universidad #203, Delegación Ixtapa, 48280, Puerto Vallarta, Jalisco, Mexico
| | - Rogelio Lalana-Rueda
- Centro de Investigaciones Marinas, Universidad de La Habana, Calle 16 #114 entre 1ra y 3ra, Miramar, 11300, Havana, Cuba
| | - Héctor Nolasco
- Centro de Investigaciones Biológicas del Noroeste, Consejo Nacional de Ciencia y Tecnología (CONACyT), Mar Bermejo #195, Colonia Playa Palo de Santa Rita, 23090, La Paz, Baja California Sur, Mexico
| | - Joaquín Díaz
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455 entre I y J, Vedado, Havana, Cuba
| | - José M Guisán
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC) Campus Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
8
|
Customized Peptide Biomaterial Synthesis via an Environment-Reliant Auto-Programmer Stigmergic Approach. MATERIALS 2018; 11:ma11040609. [PMID: 29659507 PMCID: PMC5951493 DOI: 10.3390/ma11040609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 11/28/2022]
Abstract
Stigmergy, a form of self-organization, was employed here to engineer a self-organizing peptide capable of forming a nano- or micro-structure and that can potentially be used in various drug delivery and biomedical applications. These self-assembling peptides exhibit several desirable qualities for drug delivery, tissue engineering, cosmetics, antibiotics, food science, and biomedical surface engineering. In this study, peptide biomaterial synthesis was carried out using an environment-reliant auto-programmer stigmergic approach. A model protein, α-gliadin (31, 36, and 38 kD), was forced to attain a primary structure with free –SH groups and broken down enzymatically into smaller fragments using chymotrypsin. This breakdown was carried out at different environment conditions (37 and 50 °C), and the fragments were allowed to self-organize at these temperatures. The new peptides so formed diverged according to the environmental conditions. Interestingly, two peptides (with molecular weights of 13.8 and 11.8 kD) were isolated when the reaction temperature was maintained at 50 °C, while four peptides with molecular weights of 54, 51, 13.8, and 12.8 kD were obtained when the reaction was conducted at 37 °C. Thus, at a higher temperature (50 °C), the peptides formed, compared to the original protein, had lower molecular weights, whereas, at a lower temperature (37 °C), two peptides had higher molecular weights and two had lower molecular weights.
Collapse
|
9
|
Asaro A, Martos-Sitcha JA, Martínez-Rodríguez G, Mancera JM, López Mañanes AA. In silico analysis and effects of environmental salinity in the expression and activity of digestive α-amylase and trypsins from the euryhaline crab Neohelice granulata. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2016-0324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Studies on molecular characteristics and modulation of expression of α-amylase and trypsin in the hepatopancreas of intertidal euryhaline crabs are lacking. In this work, we cloned and studied by in silico approaches the characteristics of cDNA sequences for α-amylase and two trypsins isoforms, as well as the effect of environmental salinity, on gene expression and protein activities in the hepatopancreas of Neohelice granulata (Dana, 1851), which is a good invertebrate model species. The cDNA sequence of α-amylase is 1637 bp long, encoding 459 amino acid residues. Trypsin 1 and 2 are 689 and 1174 bp long, encoding 204 and 151 amino acid residues, respectively. Multiple sequence alignment of deduced protein sequences revealed the presence of conserved motifs found in other invertebrates. In crabs acclimated at 37 psu (hyporegulation), α-amylase mRNA level and total pancreatic amylase activity were higher than at 10 psu (hyperregulation) and 35 psu (osmoconformation). Trypsin 1 mRNA levels increased at 37 psu, while trypsin 2 levels decreased at 10 and 37 psu. Total trypsin activity was similar in all salinities. Our results showed a differential modulation of α-amylase and trypsin expression and total amylase activity by salinity acclimation, suggesting the occurrence of distinct mechanisms of regulation at different levels that could lead to digestive adjustments in relation to hyperregulation and (or) hyporegulation.
Collapse
Affiliation(s)
- Antonela Asaro
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Argentina
| | - Juan Antonio Martos-Sitcha
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), E-11519 Puerto Real (Cádiz), Spain
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI–MAR), University of Cádiz, 11510 Puerto Real (Cádiz), Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), E-11519 Puerto Real (Cádiz), Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI–MAR), University of Cádiz, 11510 Puerto Real (Cádiz), Spain
| | - Alejandra Antonia López Mañanes
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Argentina
| |
Collapse
|
10
|
Asaro A, Paggi RA, del Valle JC, López Mañanes AA. Glucose homeostasis in the euryhaline crab Cytograpsus angulatus : Effects of the salinity in the amylase, maltase and sucrase activities in the hepatopancreas and in the carbohydrate reserves in different tissues. Comp Biochem Physiol B Biochem Mol Biol 2018; 216:39-47. [DOI: 10.1016/j.cbpb.2017.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 01/17/2023]
|
11
|
Rodríguez-Viera L, Perera E, Montero-Alejo V, Perdomo-Morales R, García-Galano T, Martínez-Rodríguez G, Mancera JM. Carbohydrates digestion and metabolism in the spiny lobster ( Panulirus argus): biochemical indication for limited carbohydrate utilization. PeerJ 2017; 5:e3975. [PMID: 29114440 PMCID: PMC5672836 DOI: 10.7717/peerj.3975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
As other spiny lobsters, Panulirus argus is supposed to use preferentially proteins and lipids in energy metabolism, while carbohydrates are well digested but poorly utilized. The aim of this study was to evaluate the effect of dietary carbohydrate level on digestion and metabolism in the spiny lobster P. argus. We used complementary methodologies such as post-feeding flux of nutrients and metabolites, as well as measurements of α-amylase expression and activity in the digestive tract. Lobsters readily digested and absorbed carbohydrates with a time-course that is dependent on their content in diet. Lobster showed higher levels of free glucose and stored glycogen in different tissues as the inclusion of wheat flour increased. Modifications in intermediary metabolism revealed a decrease in amino acids catabolism coupled with a higher use of free glucose as carbohydrates rise up to 20%. However, this effect seems to be limited by the metabolic capacity of lobsters to use more than 20% of carbohydrates in diets. Lobsters were not able to tightly regulate α-amylase expression according to dietary carbohydrate level but exhibited a marked difference in secretion of this enzyme into the gut. Results are discussed to highlight the limitations to increasing carbohydrate utilization by lobsters. Further growout trials are needed to link the presented metabolic profiles with phenotypic outcomes.
Collapse
Affiliation(s)
- Leandro Rodríguez-Viera
- Center for Marine Research, University of Havana, Havana, Havana, Cuba.,Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Puerto Real, Cadiz, Spain
| | - Erick Perera
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Valencia, Spain
| | - Vivian Montero-Alejo
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Rolando Perdomo-Morales
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | | | | | - Juan M Mancera
- Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Puerto Real, Cadiz, Spain
| |
Collapse
|
12
|
ASARO A, PAGGI RA, DE CASTRO RE, LÓPEZ MAÑANES AA. Amylase in the hepatopancreas of a euryhaline burrowingcrab: characteristics and modulation. TURK J ZOOL 2017. [DOI: 10.3906/zoo-1601-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Rodríguez-Viera L, Perera E, Martos-Sitcha JA, Perdomo-Morales R, Casuso A, Montero-Alejo V, García-Galano T, Martínez-Rodríguez G, Mancera JM. Molecular, Biochemical, and Dietary Regulation Features of α-Amylase in a Carnivorous Crustacean, the Spiny Lobster Panulirus argus. PLoS One 2016; 11:e0158919. [PMID: 27391425 PMCID: PMC4938498 DOI: 10.1371/journal.pone.0158919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022] Open
Abstract
Alpha-amylases are ubiquitously distributed throughout microbials, plants and animals. It is widely accepted that omnivorous crustaceans have higher α-amylase activity and number of isoforms than carnivorous, but contradictory results have been obtained in some species, and carnivorous crustaceans have been less studied. In addition, the physiological meaning of α-amylase polymorphism in crustaceans is not well understood. In this work we studied α-amylase in a carnivorous lobster at the gene, transcript, and protein levels. It was showed that α-amylase isoenzyme composition (i.e., phenotype) in lobster determines carbohydrate digestion efficiency. Most frequent α-amylase phenotype has the lowest digestion efficiency, suggesting this is a favoured trait. We revealed that gene and intron loss have occurred in lobster α-amylase, thus lobsters express a single 1830 bp cDNA encoding a highly conserved protein with 513 amino acids. This protein gives rise to two isoenzymes in some individuals by glycosylation but not by limited proteolysis. Only the glycosylated isoenzyme could be purified by chromatography, with biochemical features similar to other animal amylases. High carbohydrate content in diet down-regulates α-amylase gene expression in lobster. However, high α-amylase activity occurs in lobster gastric juice irrespective of diet and was proposed to function as an early sensor of the carbohydrate content of diet to regulate further gene expression. We concluded that gene/isoenzyme simplicity, post-translational modifications and low Km, coupled with a tight regulation of gene expression, have arose during evolution of α-amylase in the carnivorous lobster to control excessive carbohydrate digestion in the presence of an active α-amylase.
Collapse
Affiliation(s)
- Leandro Rodríguez-Viera
- Center for Marine Research, University of Havana, Havana, Cuba
- Department of Biology, University of Cadiz, Puerto Real, Cadiz, Spain
- * E-mail: (LRV); (EP)
| | - Erick Perera
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Puerto Real, Cadiz, Spain
- * E-mail: (LRV); (EP)
| | | | - Rolando Perdomo-Morales
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Antonio Casuso
- Center for Marine Research, University of Havana, Havana, Cuba
| | - Vivian Montero-Alejo
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | | | | | | |
Collapse
|
14
|
Bibo-Verdugo B, Rojo-Arreola L, Navarrete-del-Toro MA, García-Carreño F. A chymotrypsin from the Digestive Tract of California Spiny Lobster, Panulirus interruptus: Purification and Biochemical Characterization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:416-427. [PMID: 25877639 DOI: 10.1007/s10126-015-9626-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
A chymotrypsin was purified from the gastric juice of California spiny lobster (Panulirus interrutpus), using preparative electrophoresis and affinity chromatography on agarose-p-aminobenzamidine. The molecular mass was estimated by polyacrylamide gel electrophoresis (SDS-PAGE) under denaturing conditions to be 28 kDa. Chymotrypsin activity was totally inhibited by phenylmethylsulfonyl fluoride (PMSF) and chymostatin. Lobster chymotrypsin had optimal pH 7.0-8.0 and temperature of 55 °C. The enzyme is highly stable under a wide range of pH (retaining up to 80 % of activity after 1 h of incubation at pH 3.0, 5.0, and 12.0), showing higher stability at pH 8.0, and was inactivated after 20 min at 55 °C. Lobster chymotrypsin was able to hydrolyze protein substrates at as low as pH 3.0. These results are consistent with the findings of enzyme stability. Activity was assessed after incubation of enzyme with different organic solvents (in the range of 10-50 %); when tested in the presence of acetone, ethanol, propanol, and butanol, lobster chymotrypsin residual activity was >80 %; whereas in the presence of dimethyl sulfoxide (DMSO) and toluene, lobster chymotrypsin residual activity was <80 %. Deduced amino acid sequence, corroborated by mass spectrometry, was determined.
Collapse
Affiliation(s)
- Betsaida Bibo-Verdugo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, La Paz, B.C.S. 23096, Mexico
| | | | | | | |
Collapse
|
15
|
Li Y, Hui M, Cui Z, Liu Y, Song C, Shi G. Comparative transcriptomic analysis provides insights into the molecular basis of the metamorphosis and nutrition metabolism change from zoeae to megalopae in Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:1-9. [DOI: 10.1016/j.cbd.2014.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 01/20/2023]
|
16
|
A holistic view of dietary carbohydrate utilization in lobster: digestion, postprandial nutrient flux, and metabolism. PLoS One 2014; 9:e108875. [PMID: 25268641 PMCID: PMC4182579 DOI: 10.1371/journal.pone.0108875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
Crustaceans exhibit a remarkable variation in their feeding habits and food type, but most knowledge on carbohydrate digestion and utilization in this group has come from research on few species. The aim of this study was to make an integrative analysis of dietary carbohydrate utilization in the spiny lobster Panulirus argus. We used complementary methodologies such as different assessments of digestibility, activity measurements of digestive and metabolic enzymes, and post-feeding flux of nutrients and metabolites. Several carbohydrates were well digested by the lobster, but maize starch was less digestible than all other starches studied, and its inclusion in diet affected protein digestibility. Most intense hydrolysis of carbohydrates in the gastric chamber of lobster occurred between 2–6 h after ingestion and afterwards free glucose increased in hemolymph. The inclusion of wheat in diet produced a slow clearance of glucose from the gastric fluid and a gradual increase in hemolymph glucose. More intense hydrolysis of protein in the gastric chamber occurred 6–12 h after ingestion and then amino acids tended to increase in hemolymph. Triglyceride concentration in hemolymph rose earlier in wheat-fed lobsters than in lobsters fed other carbohydrates, but it decreased the most 24 h later. Analyses of metabolite levels and activities of different metabolic enzymes revealed that intermolt lobsters had a low capacity to store and use glycogen, although it was slightly higher in wheat-fed lobsters. Lobsters fed maize and rice diets increased amino acid catabolism, while wheat-fed lobsters exhibited higher utilization of fatty acids. Multivariate analysis confirmed that the type of carbohydrate ingested had a profound effect on overall metabolism. Although we found no evidence of a protein-sparing effect of dietary carbohydrate, differences in the kinetics of their digestion and absorption impacted lobster metabolism determining the fate of other nutrients.
Collapse
|
17
|
Trypsin isozymes in the lobster Panulirus argus (Latreille, 1804): from molecules to physiology. J Comp Physiol B 2014; 185:17-35. [PMID: 25192870 DOI: 10.1007/s00360-014-0851-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/10/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Trypsin enzymes have been studied in a wide variety of animal taxa due to their central role in protein digestion as well as in other important physiological and biotechnological processes. Crustacean trypsins exhibit a high number of isoforms. However, while differences in properties of isoenzymes are known to play important roles in regulating different physiological processes, there is little information on this aspect for decapod trypsins. The aim of this review is to integrate recent findings at the molecular level on trypsin enzymes of the spiny lobster Panulirus argus, into higher levels of organization (biochemical, organism) and to interpret those findings in relation to the feeding ecology of these crustaceans. Trypsin in lobster is a polymorphic enzyme, showing isoforms that differ in their biochemical features and catalytic efficiencies. Molecular studies suggest that polymorphism in lobster trypsins may be non-neutral. Trypsin isoenzymes are differentially regulated by dietary proteins, and it seems that some isoenzymes have undergone adaptive evolution coupled with a divergence in expression rate to increase fitness. This review highlights important but poorly studied issues in crustaceans in general, such as the relation among trypsin polymorphism, phenotypic (digestive) flexibility, digestion efficiency, and feeding ecology.
Collapse
|
18
|
RNA-Seq reveals the dynamic and diverse features of digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 11:37-44. [PMID: 25090194 DOI: 10.1016/j.cbd.2014.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 11/20/2022]
Abstract
The Pacific white shrimp (Litopenaeus vannamei), with high commercial value, has a typical metamorphosis pattern by going through embryo, nauplius, zoea, mysis and postlarvae during early development. Its diets change continually in this period, and a high mortality of larvae also occurs in this period. Since there is a close relationship between diets and digestive enzymes, a comprehensive investigation about the types and expression patterns of all digestive enzyme genes during early development of L. vannamei is of considerable significance for shrimp diets and larvae culture. Using RNA-Seq data, the types and expression characteristics of the digestive enzyme genes were analyzed during five different development stages (embryo, nauplius, zoea, mysis and postlarvae) in L. vannamei. Among the obtained 66,815 unigenes, 296 were annotated as 16 different digestive enzymes including five types of carbohydrase, seven types of peptidase and four types of lipase. Such a diverse suite of enzymes illustrated the capacity of L. vannamei to exploit varied diets to fit their nutritional requirements. The analysis of their dynamic expression patterns during development also indicated the importance of transcriptional regulation to adapt to the diet transition. Our study revealed the diverse and dynamic features of digestive enzymes during early development of L. vannamei. These results would provide support to better understand the physiological changes during diet transition.
Collapse
|
19
|
Wang W, Wu X, Liu Z, Zheng H, Cheng Y. Insights into hepatopancreatic functions for nutrition metabolism and ovarian development in the crab Portunus trituberculatus: gene discovery in the comparative transcriptome of different hepatopancreas stages. PLoS One 2014; 9:e84921. [PMID: 24454766 PMCID: PMC3890295 DOI: 10.1371/journal.pone.0084921] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
The crustacean hepatopancreas has different functions including absorption, storage of nutrients and vitellogenesis during growth, and ovarian development. However, genetic information on the biological functions of the crustacean hepatopancreas during such processes is limited. The swimming crab, Portunus trituberculatus, is a commercially important species for both aquaculture and fisheries in the Asia-Pacific region. This study compared the transcriptome in the hepatopancreas of female P. trituberculatus during the growth and ovarian maturation stages by 454 high-throughput pyrosequencing and bioinformatics. The goal was to discover genes in the hepatopancreas involved in food digestion, nutrition metabolism and ovarian development, and to identify patterns of gene expression during growth and ovarian maturation. Our transcriptome produced 303,450 reads with an average length of 351 bp, and the high quality reads were assembled into 21,635 contigs and 31,844 singlets. Based on BLASTP searches of the deduced protein sequences, there were 7,762 contigs and 4,098 singlets with functional annotation. Further analysis revealed 33,427 unigenes with ORFs, including 17,388 contigs and 16,039 singlets in the hepatopancreas, while only 7,954 unigenes (5,691 contigs and 2,263 singlets) with the predicted protein sequences were annotated with biological functions. The deduced protein sequences were assigned to 3,734 GO terms, 25 COG categories and 294 specific pathways. Furthermore, there were 14, 534, and 22 identified unigenes involved in food digestion, nutrition metabolism and ovarian development, respectively. 212 differentially expressed genes (DEGs) were found between the growth and endogenous stage of the hepatopancreas, while there were 382 DEGs between the endogenous and exogenous stage hepatopancreas. Our results not only enhance the understanding of crustacean hepatopancreatic functions during growth and ovarian development, but also represent a basis for further research on new genes and functional genomics of P. trituberculatus or closely related species.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Zhijun Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Huajun Zheng
- Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| |
Collapse
|
20
|
Rojo L, García-Carreño F, de Los Angeles Navarrete del Toro M. Cold-adapted digestive aspartic protease of the clawed lobsters Homarus americanus and Homarus gammarus: biochemical characterization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:87-96. [PMID: 22648335 DOI: 10.1007/s10126-012-9461-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
Aspartic proteinases in the gastric fluid of clawed lobsters Homarus americanus and Homarus gammarus were isolated to homogeneity by single-step pepstatin-A affinity chromatography; such enzymes have been previously identified as cathepsin D-like enzymes based on their deduced amino acid sequence. Here, we describe their biochemical characteristics; the properties of the lobster enzymes were compared with those of its homolog, bovine cathepsin D, and found to be unique in a number of ways. The lobster enzymes demonstrated hydrolytic activity against synthetic and natural substrates at a wider range of pH; they were more temperature-sensitive, showed no changes in the K(M) value at 4°C, 10°C, and 25°C, and had 20-fold higher k(cat)/K(M) values than bovine enzyme. The bovine enzyme was temperature-dependent. We propose that both properties arose from an increase in molecular flexibility required to compensate for the reduction of reaction rates at low habitat temperatures. This is supported by the fast denaturation rates induced by temperature.
Collapse
Affiliation(s)
- Liliana Rojo
- Centro de Investigaciones Biológicas del Noroeste-CIBNOR, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | | | | |
Collapse
|
21
|
Perera E, Rodríguez-Casariego J, Rodríguez-Viera L, Calero J, Perdomo-Morales R, Mancera JM. Lobster (Panulirus argus) hepatopancreatic trypsin isoforms and their digestion efficiency. THE BIOLOGICAL BULLETIN 2012; 222:158-170. [PMID: 22589406 DOI: 10.1086/bblv222n2p158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It is well known that crustaceans exhibit several isoforms of trypsin in their digestive system. Although the number of known crustacean trypsin isoforms continues increasing, especially those derived from cDNA sequences, the role of particular isoenzymes in digestion remains unknown. Among invertebrates, significant advances in the understanding of the role of multiple trypsins have been made only in insects. Since it has been demonstrated that trypsin isoenzyme patterns (phenotypes) in lobster differ in digestion efficiency, we used this crustacean as a model for assessing the biochemical basis of such differences. We demonstrated that the trypsin isoform known to be present in all individuals of Panulirus argus has a high catalytic efficiency (k(cat)/K(m) ) and is the most reactive toward native proteinaceous substrates, whereas one of the isoforms present in less efficient individuals has a lower k(cat) and a lower k(cat)/K(m), and it is less competent at digesting native proteins. A fundamental question in biology is how genetic differences produce different physiological performances. This work is the first to demonstrate that trypsin phenotypic variation in crustacean protein digestion relies on the biochemical properties of the different isoforms. Results are relevant for understanding trypsin polymorphism and protein digestion in lobster.
Collapse
Affiliation(s)
- Erick Perera
- Center for Marine Research, University of Havana, Cuba.
| | | | | | | | | | | |
Collapse
|
22
|
Perera E, Rodríguez-Viera L, Rodríguez-Casariego J, Fraga I, Carrillo O, Martínez-Rodríguez G, Mancera JM. Dietary protein quality differentially regulates trypsin enzymes at the secretion and transcription level in Panulirus argus by distinct signaling pathways. J Exp Biol 2012; 215:853-62. [DOI: 10.1242/jeb.063925] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The effects of pelleted diets with different protein composition (fish, squid or soybean meals as main protein sources) on trypsin secretion and expression were studied in the lobster Panulirus argus. Trypsin secretion was shown to be maximal 4 h after ingestion. At this time, fish- and squid-based diets induced trypsin secretion, as well as up-regulation of the major trypsin isoform at the transcription level. While fish- and squid-based diets elicited a prandial response, soybean-based diet failed to stimulate the digestive gland to secrete trypsin into the gastric fluid or induce trypsin expression above the levels observed in fasting lobsters. In vitro assays showed that intact proteins rather than protein hydrolysates stimulate trypsin secretion in the lobster. However, the signal for trypsin transcription appears to be different to that for secretion and is probably mediated by the appearance of free amino acids in the digestive gland, suggesting a stepwise regulation of trypsin enzymes during digestion. We conclude that trypsin enzymes in P. argus are regulated at the transcription and secretion level by the quality of dietary proteins through two distinct signaling pathways. Our results indicate that protein digestion efficiency in spiny lobsters can be improved by selecting appropriated protein sources. However, other factors like the poor solubility of dietary proteins in dry diets could hamper further enhancement of digestion efficiency.
Collapse
Affiliation(s)
- Erick Perera
- Center for Marine Research, University of Havana, Cuba
| | | | | | | | | | | | - Juan M. Mancera
- Department of Biology, Faculty of Marine and Environmental Science, University of Cadiz, Spain
| |
Collapse
|
23
|
Sun HJ, Wang J, Tao XM, Shi J, Huang MY, Chen Z. Purification and characterization of polyphenol oxidase from rape flower. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:823-9. [PMID: 22239496 DOI: 10.1021/jf2032999] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The purification and partial enzymology characteristics of polyphenol oxidase (PPO) from rape flower were studied. After preliminary treatments, the crude enzyme solution was in turn purified with ammonium sulfate, dialysis, and Sephadex G-75 gel chromatography. The optimal conditions and stability of PPO were examined at different pH values and temperatures. Subsequently, PPO was also characterized by substrate (catechol) concentrations, inhibitors, kinetic parameters, and molecular weight. Results showed that the optimal pH for PPO activity was 5.5 in the presence of catechol and that PPO was relatively stable at pH 3.5-5.5. PPO was moderately stable at temperatures from 60 to 70 °C, whereas it was easily denatured at 80-90 °C. Ethylenediaminetetraacetic acid, sodium chloride, and calcium chloride had little inhibitive effects on PPO, whereas citric acid, sodium sulfite, and ascorbic acid had strongly inhibitive effects. The Michaelis-Menten constant (K(m)) and maximal reaction velocity (V(max)) of PPO were 0.767 mol/L and 0.519 Ab/min/mL of the crude PPO solution, respectively. PPO was finally purified to homogeneity with a purification factor of 4.41-fold and a recovery of 12.41%. Its molecular weight was 60.4 kDa, indicating that the PPO is a dimer. The data obtained in this research may help to prevent the enzymatic browning of rape flower during its storage and processing.
Collapse
Affiliation(s)
- Han-Ju Sun
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| | | | | | | | | | | |
Collapse
|
24
|
Digestive enzymes of two freshwater fishes (Limia vittata and Gambusia punctata) with different dietary preferences at three developmental stages. Comp Biochem Physiol B Biochem Mol Biol 2010; 158:136-41. [PMID: 21044696 DOI: 10.1016/j.cbpb.2010.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/26/2010] [Accepted: 10/28/2010] [Indexed: 11/22/2022]
Abstract
The variation of activity of some digestive enzymes was studied in three age groups of two freshwater endemic fishes from Cuba: Limia vittata and Gambusia punctata. Trypsin, chymotrypsin and amylase activities showed a different pattern between both species. Trypsin and chymotrypsin activity increased with the age of fishes, while amylase activity decreased. The highest activity of trypsin and chymotrypsin was registered in G. punctata while the highest amylase activity was detected in L. vittata. Zymograms revealed proteases with molecular masses similar to trypsin and chymotrypsin reported for other fish species. Amylase electrophoresis showed the presence of this enzyme; in L. vittata amylase zymograms showed two bands with molecular masses of 175 and 100 kDa and in G. punctata four bands of 175, 100, 46 and 30 kDa respectively were found. The activity of the digestive enzymes can be used as an effective indicator of the feeding habits and the development of the digestive tracts in L. vittata and G. punctata.
Collapse
|
25
|
Rojo L, Sotelo-Mundo R, García-Carreño F, Gráf L. Isolation, biochemical characterization, and molecular modeling of American lobster digestive cathepsin D1. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:394-400. [PMID: 20817002 DOI: 10.1016/j.cbpb.2010.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 11/16/2022]
Abstract
An aspartic proteinase was isolated from American lobster gastric fluid. The purified cathepsin D runs as a single band on native-PAGE displaying proteolytic activity on a zymogram at pH 3.0, with an isoelectric point of 4.7. Appearance of the protein in SDS-PAGE, depended on the conditions of the gel electrophoresis. SDS treatment by itself was not able to fully unfold the protein. Thus, in SDS-PAGE the protein appeared to be heterogeneous. A few minute of boiling the sample in the presence of SDS was necessary to fully denature the protein that then run in the gel as a single band of ~50 kDa. The protein sequence of lobster cathepsin D1, as deduced from its mRNA sequence, lacks a 'polyproline loop' and β-hairpin, which are characteristic of some of its structural homologues. A comparison of amino acid sequences of digestive and non-digestive cathepsin D-like enzymes from invertebrates showed that most cathepsin D enzymes involved in food digestion, lack the polyproline loop, whereas all non-digestive cathepsin Ds, including the American lobster cathepsin D2 paralog, contain the polyproline loop. We propose that the absence or presence of this loop may be characteristic of digestive and non-digestive aspartic proteinases, respectively.
Collapse
Affiliation(s)
- Liliana Rojo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Mexico
| | | | | | | |
Collapse
|
26
|
Perera E, Pons T, Hernandez D, Moyano FJ, Martínez-Rodríguez G, Mancera JM. New members of the brachyurins family in lobster include a trypsin-like enzyme with amino acid substitutions in the substrate-binding pocket. FEBS J 2010; 277:3489-501. [PMID: 20649906 DOI: 10.1111/j.1742-4658.2010.07751.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erick Perera
- Center for Marine Research, University of Havana, Cuba.
| | | | | | | | | | | |
Collapse
|
27
|
Perera E, Moyano FJ, Díaz M, Perdomo-Morales R, Montero-Alejo V, Rodriguez-Viera L, Alonso E, Carrillo O, Galich GS. Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:250-6. [PMID: 18692150 DOI: 10.1016/j.cbpb.2008.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 11/25/2022]
Abstract
Changes in major digestive enzymes through developmental and molt stages were studied for the spiny lobster Panulirus argus. There were significant positive relationships between specific activity of trypsin and amylase enzymes and lobster size, whereas esterase and lipase specific activities decreased as lobsters aged. No relationship was found between amylase/trypsin ratio and lobster size. Positive trends were found, however, for trypsin/lipase and amylase/lipase ratios. Results suggest that changes in enzyme activity respond to the lobsters' physiological needs for particular dietary components although multivariate analysis suggested that enzyme activities could be not totally independent of diet. On the other hand, the pattern of changes of major enzyme activities through molt cycle was similar for most enzymes studied. Following molt, trypsin, chymotrypsin, amylase, and lipase activities gradually increased to maximal levels at late intermolt (C4) and premolt (D). There were no variations in the electrophoretic pattern of digestive enzymes through developmental and molt stages and thus, it is demonstrated that regulation is exerted quantitatively rather than qualitatively. Further studies on the effect of other intrinsic and extrinsic factors on digestive enzyme activities are needed to fully understand digestive abilities and regulation mechanisms in spiny lobsters.
Collapse
Affiliation(s)
- Erick Perera
- Center for Marine Research, University of Havana, Calle 16 No. 114 e/ 1ra y 3ra, Miramar, Playa, CP 11300, Havana, Cuba.
| | | | | | | | | | | | | | | | | |
Collapse
|