1
|
Reis HBD, Carvalho ME, Espigolan R, Poleti MD, Ambrizi DR, Berton MP, Ferraz JBS, de Mattos Oliveira EC, Eler JP. Genome-Wide Association (GWAS) Applied to Carcass and Meat Traits of Nellore Cattle. Metabolites 2023; 14:6. [PMID: 38276296 PMCID: PMC10818672 DOI: 10.3390/metabo14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/27/2024] Open
Abstract
The meat market has enormous importance for the world economy, and the quality of the product offered to the consumer is fundamental for the success of the sector. In this study, we analyzed a database which contained information on 2470 animals from a commercial farm in the state of São Paulo, Brazil. Of this total, 2181 animals were genotyped, using 777,962 single-nucleotide polymorphisms (SNPs). After quality control analysis, 468,321 SNPs provided information on the number of genotyped animals. Genome-wide association analyses (GWAS) were performed for the characteristics of the rib eye area (REA), subcutaneous fat thickness (SFT), shear force at 7 days' ageing (SF7), and intramuscular fat (IMF), with the aid of the single-step genomic best linear unbiased prediction (ssGBLUP) method, with the purpose of identifying possible genomic windows (~1 Mb) responsible for explaining at least 0.5% of the genetic variance of the traits under analysis (≥0.5%). These genomic regions were used in a gene search and enrichment analyses using MeSH terms. The distributed heritability coefficients were 0.14, 0.20, 0.18, and 0.21 for REA, SFT, SF7, and IMF, respectively. The GWAS results indicated significant genomic windows for the traits of interest in a total of 17 chromosomes. Enrichment analyses showed the following significant terms (FDR ≤ 0.05) associated with the characteristics under study: for the REA, heat stress disorders and life cycle stages; for SFT, insulin and nonesterified fatty acids; for SF7, apoptosis and heat shock proteins (HSP27); and for IMF, metalloproteinase 2. In addition, KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis allowed us to highlight important metabolic pathways related to the studied phenotypes, such as the growth hormone synthesis, insulin-signaling, fatty acid metabolism, and ABC transporter pathways. The results obtained provide a better understanding of the molecular processes involved in the expression of the studied characteristics and may contribute to the design of selection strategies and future studies aimed at improving the productivity of Nellore cattle.
Collapse
Affiliation(s)
- Hugo Borges Dos Reis
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Minos Esperândio Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Rafael Espigolan
- Department of Animal Science and Biological Sciences, Federal University of Santa Maria (UFSM), Av. Independencia, 3751, Palmeira das Missões 98300-000, RS, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Dewison Ricardo Ambrizi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Mariana Piatto Berton
- School of Agricultural and Veterinary Studies (FCAV), São Paulo State University, Jaboticabal 14884-900, SP, Brazil;
| | - José Bento Sterman Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Elisângela Chicaroni de Mattos Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Joanir Pereira Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| |
Collapse
|
2
|
Orosz G, Szabó L, Bereti S, Zámbó V, Csala M, Kereszturi É. Molecular Basis of Unequal Alternative Splicing of Human SCD5 and Its Alteration by Natural Genetic Variations. Int J Mol Sci 2023; 24:ijms24076517. [PMID: 37047490 PMCID: PMC10095032 DOI: 10.3390/ijms24076517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Alternative splicing (AS) is a major means of post-transcriptional control of gene expression, and provides a dynamic versatility of protein isoforms. Cancer-related AS disorders have diagnostic, prognostic and therapeutic values. Changes in the expression and AS of human stearoyl-CoA desaturase-5 (SCD5) are promising specific tumor markers, although the transcript variants (TVs) of the gene have not yet been confirmed. Our in silico, in vitro and in vivo study focuses on the distribution of SCD5 TVs (A and B) in human tissues, the functionality of the relevant splice sites, and their modulation by certain single-nucleotide variations (SNVs). An order of magnitude higher SCD5A expression was found compared with SCD5B. This unequal splicing is attributed to a weaker recognition of the SCD5B-specific splicing acceptor site, based on predictions confirmed by an optimized minigene assay. The pronounced dominance of SCD5A was largely modified (rs1430176385_A, rs1011850309_A) or even inverted (rs1011850309_C) by natural SNVs at the TV-specific splice sites. Our results provide long missing data on the proportion of SCD5 TVs in human tissues and reveal mutation-driven changes in SCD5 AS, potentially affecting tumor-associated reprogramming of lipid metabolism, thus having prognostic significance, which may be utilized for novel and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Gabriella Orosz
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Luca Szabó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Szanna Bereti
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Veronika Zámbó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
3
|
Gong R, Xing L, Yin J, Ding Y, Liu X, Bao J, Li J. Appropriate cold stimulation changes energy distribution to improve stress resistance in broilers. J Anim Sci 2023; 101:skad185. [PMID: 37279534 PMCID: PMC10276644 DOI: 10.1093/jas/skad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Appropriate cold stimulation can improve stress resistance in broilers and alleviate the adverse impacts of a cold environment. To investigate the effects of intermittent mild cold stimulation (IMCS) on energy distribution in the livers of broilers, 96 healthy 1-d-old Ross-308 male broilers were randomly divided into the control group (CC) and the cold stimulation group (H5). The CC group was raised at a normal thermal temperature, i.e., 35 °C until 3 d, after which the temperature was dropped gradually by 0.5 °C/d until 20 °C at 33 d. This temperature was maintained until 49 d. The H5 group was raised at the same temperature as the CC group until 14 d (35 to 29.5 °C) and at 3 °C below the temperature of the CC group starting at 0930 hours for 5 h every other day from 15 to 35 d (26 to 17°C). The temperature was returned to 20 °C at 36 d and maintained until 49 d. At 50 d, all broilers were subjected to acute cold stress (ACS) at 10 °C for 6 and 12 h. We found that IMCS had positive effects on production performance. Using transcriptome sequencing of the broiler livers, 327 differentially expressed genes (DEG) were identified, and highly enriched in fatty acid biosynthesis, fatty acid degradation, and the pyruvate metabolism pathway. When compared to the CC group, the mRNA levels of ACAA1, ACAT2, ACSL1, CPT1A, LDHB, and PCK1 in the H5 group were increased at 22 d (P < 0.05). The LDHB mRNA level was upregulated in the H5 group at 29 d compared to the CC group (P < 0.05). After 21 d of IMCS (at 36 d), the mRNA expression levels of ACAT2 and PCK1 were found to be significantly increased in the H5 group compared to the CC group (P < 0.05). Seven days after the IMCS had ended (at 43 d), the mRNA levels of ACAA1, ACAT2, and LDHB in the H5 group were higher than in the CC group (P < 0.05). The mRNA levels of heat shock protein (HSP) 70, HSP90, and HSP110 in the H5 group were higher than in the CC group after 6 h of ACS (P < 0.05). The protein levels of HSP70 and HSP90 in the H5 group were downregulated after 12 h of ACS, compared to the CC group (P < 0.05). These results indicated that IMCS at 3 °C lower than the normal temperature could improve energy metabolism and stress resistance in the livers of broilers, alleviate the damage of short-term ACS on broilers, help broilers adapt to the low temperature, and maintain stable of energy metabolism in the body.
Collapse
Affiliation(s)
- Rixin Gong
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingwen Yin
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuqing Ding
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
4
|
Expression patterns of AMPK and genes associated with lipid metabolism in newly hatched chicks during the metabolic perturbation of fasting and refeeding. Poult Sci 2022; 101:102231. [PMID: 36334428 PMCID: PMC9630794 DOI: 10.1016/j.psj.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
Fasting–refeeding perturbation has been extensively used to reveal specific genes and metabolic pathways that control energy metabolism in chickens. In this study, 200 chickens were randomly assigned to 2 groups after hatching: the control group (C, fed ad libitum) and the fasting–refeeding group (T, water ad libitum). The chicks in Group T were fasted for 72 h, and then fed for another 48 h. Liver, hypothalamus, and adipose samples were collected at 0 (F0), 24 (F24), 48 (F48), and 72 h (F72) after fasting and 4 (FR4), 12 (FR12), 24 (FR24), and 48 h (FR48) after refeeding, respectively. Results showed that Group T had a significantly higher number of liver vacuoles (P < 0.05 or P < 0.01) and a significantly lower gray value of Sudan IIIstained sections (P < 0.05 or P < 0.01) than Group C at F48–FR48. In addition, compared with the Group C, fasting and refeeding reduced the expression of stearoyl CoA desaturase (SCD) mRNA (P < 0.05 or P < 0.01) in the liver and adipose tissues, the expression of glucocorticoid receptor (GR) mRNA (P < 0.05 or P < 0.01) in the liver, adipose, and hypothalamus tissues, and the expression of fatty acid synthase (FAS) mRNA (P < 0.05 or P < 0.01) in the liver at F24–FR24. Moreover, relative to those in Group C, fasting and refeeding increased the mRNA expression levels of adenosine monophosphate-activated protein kinase (AMPK) α, AMPKβ, and AMPKγ in the hypothalamus (P < 0.05 or P < 0.01) at F24–FR24. In conclusion, fasting and refeeding increased the fat content of the liver, and the expression of lipolytic genes in the hypothalamus (e.g., AMPKα, AMPKβ, and AMPKγ) but decreased the expression of fat synthesis genes in the liver (e.g., SCD, GR, and FAS), adipose (SCD and GR), and hypothalamus (GR).
Collapse
|
5
|
Zámbó V, Orosz G, Szabó L, Tibori K, Sipeki S, Molnár K, Csala M, Kereszturi É. A Single Nucleotide Polymorphism (rs3811792) Affecting Human SCD5 Promoter Activity Is Associated with Diabetes Mellitus. Genes (Basel) 2022; 13:genes13101784. [PMID: 36292669 PMCID: PMC9601412 DOI: 10.3390/genes13101784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The combined prevalence of type 1 (T1DM) and type 2 (T2DM) diabetes mellitus is 10.5% worldwide and this is constantly increasing. The pathophysiology of the diseases include disturbances of the lipid metabolism, in which acyl-CoA desaturases play a central role as they synthesize unsaturated fatty acids, thereby providing protection against lipotoxicity. The stearoyl-CoA desaturase-5 (SCD5) isoform has received little scientific attention. We aimed to investigate the SCD5 promoter and its polymorphisms in vitro, in silico and in a case-control study. The SCD5 promoter region was determined by a luciferase reporter system in HepG2, HEK293T and SK-N-FI cells and it was proved to be cell type-specific, but it was insensitive to different fatty acids. The effect of the SCD5 promoter polymorphisms rs6841081 and rs3811792 was tested in the transfected cells. The T allele of rs3811792 single nucleotide polymorphism (SNP) significantly reduced the activity of the SCD5 promoter in vitro and modified several transcription factor binding sites in silico. A statistically significant association of rs3811792 SNP with T1DM and T2DM was also found, thus supporting the medical relevance of this variation and the complexity of the molecular mechanisms in the development of metabolic disorders. In conclusion, the minor allele of rs3811792 polymorphism might contribute to the development of diabetes by influencing the SCD5 promoter activity.
Collapse
|
6
|
Stearoyl-CoA desaturase 1 as a therapeutic target for cancer: a focus on hepatocellular carcinoma. Mol Biol Rep 2022; 49:8871-8882. [PMID: 35906508 DOI: 10.1007/s11033-021-07094-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
One of the main characteristics of cancer cells is the alteration in lipid composition, which is associated with a significant monounsaturated fatty acids (MUFAs) enrichment. In addition to their structural functions in newly synthesized membranes in proliferating cancer cells, these fatty acids are involved in tumorigenic signaling. Increased expression and activity of stearoyl CoA desaturase (SCD1), i.e., an enzyme converting saturated fatty acids to Δ9-monounsaturated fatty acids, has been observed in various cancer cells. This increase in expression and activity has also been associated with cancer aggressiveness and poor patient outcome. Previous studies have also indicated the SCD1 involvement in increased cancer cells proliferation, growth, migration, epithelial to mesenchymal transition, metastasis, chemoresistance, and maintenance of cancer stem cells properties. Hence, SCD1 seems to be a player in malignancy development and may be considered a novel therapeutic target in cancers, including hepatocellular carcinoma (HCC). This review study aims to discuss the impact of SCD1 as a major component in lipid signaling in HCC.
Collapse
|
7
|
Ren H, Xiao W, Qin X, Cai G, Chen H, Hua Z, Cheng C, Li X, Hua W, Xiao H, Zhang L, Dai J, Zheng X, Zhu Z, Qian C, Yao J, Bi Y. Myostatin regulates fatty acid desaturation and fat deposition through MEF2C/miR222/SCD5 cascade in pigs. Commun Biol 2020; 3:612. [PMID: 33097765 PMCID: PMC7584575 DOI: 10.1038/s42003-020-01348-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN), associated with the “double muscling” phenotype, affects muscle growth and fat deposition in animals, whereas how MSTN affects adipogenesis remains to be discovered. Here we show that MSTN can act through the MEF2C/miR222/SCD5 cascade to regulate fatty acid metabolism. We generated MSTN-knockout (KO) cloned Meishan pigs, which exhibits typical double muscling trait. We then sequenced transcriptome of subcutaneous fat tissues of wild-type (WT) and MSTN-KO pigs, and intersected the differentially expressed mRNAs and miRNAs to predict that stearoyl-CoA desaturase 5 (SCD5) is targeted by miR222. Transcription factor binding prediction showed that myogenic transcription factor 2C (MEF2C) potentially binds to the miR222 promoter. We hypothesized that MSTN-KO upregulates MEF2C and consequently increases the miR222 expression, which in turn targets SCD5 to suppress its translation. Biochemical, molecular and cellular experiments verified the existence of the cascade. This novel molecular pathway sheds light on new targets for genetic improvements in pigs. Ren, Xiao et al. identify a mechanism by which myostatin regulates adipogenesis, using myostatin-knockout pigs. Myostatin deficiency upregulates MEF2C that binds to the promoter of miR222. miR222 in turn downregulates stearoyl-CoA desaturase 5. This study provides potential targets that can be engineered to generate a new pig variety that has high leanness while maintaining its high intramuscular fat content.
Collapse
Affiliation(s)
- Hongyan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Wei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Xingliang Qin
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Gangzhi Cai
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Hao Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Zaidong Hua
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Cheng Cheng
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Xinglei Li
- Wuhan Bioacme Biotechnology Co., Ltd., 430000, Wuhan, China
| | - Wenjun Hua
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Hongwei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Liping Zhang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Jiali Dai
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Xinmin Zheng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Zhe Zhu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Chong Qian
- Beijing Center for Physical and Chemical Analysis, 100094, Beijing, China
| | - Jie Yao
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China.
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China.
| |
Collapse
|
8
|
Igal RA, Sinner DI. Stearoyl-CoA desaturase 5 (SCD5), a Δ-9 fatty acyl desaturase in search of a function. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158840. [PMID: 33049404 DOI: 10.1016/j.bbalip.2020.158840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
A large body of research has demonstrated that human stearoyl-CoA desaturase 1 (SCD1), a universally expressed fatty acid Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA), is a central regulator of metabolic and signaling pathways involved in cell proliferation, differentiation, and survival. Unlike SCD1, stearoyl-CoA desaturase 5 (SCD5), a second SCD isoform found in a variety of vertebrates, including humans, has received considerably less attention but new information on the catalytic properties, regulation and biological functions of this enzyme has begun to emerge. This review will examine the new evidence that supports key metabolic and biological roles for SCD5, as well as the potential implication of this desaturase in the mechanisms of human diseases.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Irving Medical Center, 630 West 168th Street, PH 1501 East, New York City, NY 10032, United States of America.
| | - Débora I Sinner
- Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Lab: R4447, Office: R4445, MLC 7009, 3333 Burnet Ave, Cincinnati, OH 45229, United States of America.
| |
Collapse
|
9
|
Mihelic R, Winter H, Powers JB, Das S, Lamour K, Campagna SR, Voy BH. Genes controlling polyunsaturated fatty acid synthesis are developmentally regulated in broiler chicks. Br Poult Sci 2020; 61:508-517. [PMID: 32316746 DOI: 10.1080/00071668.2020.1759788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The objective of this study was to characterise the regulation of the pathways that synthesise long-chain polyunsaturated fatty acids (PUFA) on developing adipose deposits in broiler embryos and chicks. Subcutaneous adipose depots were harvested from embryos and embryonic d E13, E15 and E17. Subcutaneous, abdominal and crop (neck) adipose, as well as liver, were collected at 7 and 14 d post-hatch. 2. Targeted RNA sequencing was used to quantify expression of 6 elongation of very long-chain fatty acid (ELOVL) genes, two isoforms of stearoyl-CoA desaturase (SCD and SCD5), and three fatty acid desaturases (FADS1, FADS2, and FADS6) in each depot and in the liver. Expression levels of marker genes for fatty acid oxidation and adipogenesis (peroxisome proliferator-activated receptor gamma (PPARG)) were quantified. Fatty acid composition of subcutaneous adipose was analysed using gas chromatograph-mass spectrometry (GC/MS). 3. Genes in the PUFA synthetic pathway were differentially expressed across developmental ages and between depots. These include elongase and desaturase genes, that have not previously been characterised in chicken. Correlation analyses identified subsets of co-regulated genes and fatty acids and highlighted relationships that may influence adipose metabolism and development. 4. It was concluded that PUFA synthesis is an active and dynamically regulated pathway in developing adipose deposits in the broiler chick. These data highlighted potential novel roles for specific elongase and desaturase genes in adipose deposition and metabolism.
Collapse
Affiliation(s)
- R Mihelic
- Department of Animal Science, University of Tennessee , Knoxville, TN, USA
| | - H Winter
- Department of Animal Science, University of Tennessee , Knoxville, TN, USA
| | - J B Powers
- Department of Chemistry, University of Tennessee , Knoxville, TN, USA.,Biological and Small Molecule Mass Spectrometry Core, University of Tennessee , Knoxville, TN, USA
| | - S Das
- Department of Animal Science, University of Tennessee , Knoxville, TN, USA
| | - K Lamour
- Department of Entomology and Plant Pathology, University of Tennessee , Knoxville, TN, USA
| | - S R Campagna
- Department of Chemistry, University of Tennessee , Knoxville, TN, USA.,Biological and Small Molecule Mass Spectrometry Core, University of Tennessee , Knoxville, TN, USA
| | - B H Voy
- Department of Animal Science, University of Tennessee , Knoxville, TN, USA
| |
Collapse
|
10
|
Lu X, Zhang Y, Chen L, Wang Q, Zeng Z, Dong C, Qi Y, Liu Y. Whole exome sequencing identifies SCD5 as a novel causative gene for autosomal dominant nonsyndromic deafness. Eur J Med Genet 2020; 63:103855. [PMID: 31972369 DOI: 10.1016/j.ejmg.2020.103855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
We report a genetic assessment of autosomal dominant, nonsyndromic, progressive sensorineural hearing loss in a Chinese family, combining whole-exome sequencing and genome-wide linkage analysis. A novel missense mutation, c.626G > C, in the SCD5 gene was identified in this family. The heterozygous missense mutation could segregate hearing loss cases among family members, and was predicted to be deleterious by Polyphen-2, LRT and Mutation Taster. SCD5 is an endoplasmic reticulum enzyme, catalyzing the formation of monounsaturated fatty acids (MUFAs) from saturated fatty acids (SFAs). It plays a crucial role in regulating lipid metabolism. The SCD5 protein is expressed in inner and outer hair cells of the organ of Corti, the stria vascularis, cells of the lateral cochlear wall behind the spiral prominence, and more strongly in spiral ganglion cells of guinea pig and human fetal cochleas. SCD5 protein was also expressed in the brain, consistent with the hearing loss feature: the patients had a poor speech discrimination score at young age and mild hearing loss as evaluated by pure tone audiometry. In summary, we identified SCD5 as a novel gene responsible for autosomal dominant nonsyndromic deafness.
Collapse
Affiliation(s)
- Xingxing Lu
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Yanmei Zhang
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Li Chen
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Qi Wang
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen'gang Zeng
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Cheng Dong
- Taikang Insurance Group Inc., Beijing, China
| | - Yu Qi
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yuhe Liu
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China.
| |
Collapse
|
11
|
Hwang J, Singh N, Long C, Smith SB. The Lentiviral System Construction for Highly Expressed Porcine Stearoyl-CoA Desaturase-1 and Functional Characterization in Stably Transduced Porcine Swine Kidney Cells. Lipids 2019; 53:933-945. [PMID: 30592064 PMCID: PMC10071579 DOI: 10.1002/lipd.12102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
The most highly regulated and abundant fatty acid in animal tissue is oleic acid (18:1n9). Oleic acid is synthesized by the Δ9 desaturase, stearoyl-CoA desaturase-1 (SCD1), which is responsible for the synthesis of the putative cytokine palmitoleic acid (16:1n7) and 18:2 cis-9, trans-11 conjugated linoleic acid. Owing to the importance of SCD1 in lipid metabolism, we generated porcine swine kidney (SK6) transgenic cell lines for sustained overexpression or knockdown of porcine stearoyl-CoA desaturase-1 (pSCD1) in an inducible manner by utilizing a lentiviral expression system. We successfully validated these cell culture models for expression and functionality of pSCD1 by documenting that the pSCD-transduced cells overexpressed pSCD1 protein and mRNA. Additionally, the pSCD1-transduced cells increased the conversion of palmitate (16:0) to palmitoleic acid nearly fourfold. The lentiviral vectors utilized in this study can be further used to generate transgenic animals to document the effects of the overexpression of SCD1 on obesity and steatosis.
Collapse
Affiliation(s)
- Jinhee Hwang
- Department of Animal Science, Texas A & M University, College Station, 2471 TAMU, TX 77843, USA
| | - Neetu Singh
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, 4466 TAMU, TX, 77843, USA
| | - Charles Long
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, 4466 TAMU, TX, 77843, USA
| | - Stephen B Smith
- Department of Animal Science, Texas A & M University, College Station, 2471 TAMU, TX 77843, USA
| |
Collapse
|
12
|
Zhang S, Shen L, Xia Y, Yang Q, Li X, Tang G, Jiang Y, Wang J, Li M, Zhu L. DNA methylation landscape of fat deposits and fatty acid composition in obese and lean pigs. Sci Rep 2016; 6:35063. [PMID: 27721392 PMCID: PMC5056348 DOI: 10.1038/srep35063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/23/2016] [Indexed: 01/19/2023] Open
Abstract
Obese and lean type pig breeds exhibit differences in their fat deposits and fatty acid composition. Here, we compared the effect of genome-wide DNA methylation on fatty acid metabolism between Landrace pigs (LP, leaner) and Rongchang pigs (RP, fatty). We found that LP backfat (LBF) had a higher polyunsaturated fatty acid content but a lower adipocyte volume than RP backfat (RBF). LBF exhibited higher global DNA methylation levels at the genome level than RBF. A total of 483 differentially methylated regions (DMRs) were located in promoter regions, mainly affecting olfactory and sensory activity and lipid metabolism. In LBF, the promoters of genes related to ATPase activity had significantly stronger methylation. This fact may suggest lower energy metabolism levels, which may result in less efficient lipid synthesis in LBF. Furthermore, we identified a DMR in the miR-4335 and miR-378 promoters and validated their methylation status by bisulfite sequencing PCR. The hypermethylation of the promoters of miR-4335 and miR-378 in LBF and the resulting silencing of the target genes may result in LBF's low content in saturated fatty acids and fat deposition capacity. This study provides a solid basis for exploring the epigenetic mechanisms affecting fat deposition and fatty acid composition.
Collapse
Affiliation(s)
- Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | | | - Qiong Yang
- Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu, Sichuan, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanzhi Jiang
- Department of Biology, College of Life and Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Yao D, Luo J, He Q, Shi H, Li J, Wang H, Xu H, Chen Z, Yi Y, Loor JJ. SCD1 Alters Long-Chain Fatty Acid (LCFA) Composition and Its Expression Is Directly Regulated by SREBP-1 and PPARγ 1 in Dairy Goat Mammary Cells. J Cell Physiol 2016; 232:635-649. [DOI: 10.1002/jcp.25469] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Dawei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Hengbo Shi
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou P. R. China
| | - Jun Li
- College of Animal Science and Technology; Henan University of Animal Husbandry and Economy; Zhengzhou Henan P. R. China
| | - Hui Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Huifen Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Zhi Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Yongqing Yi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences; University of IIlinois; Urbana Illinois
| |
Collapse
|
14
|
Lengi AJ, Corl BA. Bovine Brain Region-Specific Stearoyl-CoA Desaturase Expression and Fatty Acid Composition. Lipids 2015; 50:555-63. [DOI: 10.1007/s11745-015-4015-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 03/23/2015] [Indexed: 11/29/2022]
|
15
|
Alvarenga TIRC, Chen Y, Furusho-Garcia IF, Perez JRO, Hopkins DL. Manipulation of Omega-3 PUFAs in Lamb: Phenotypic and Genotypic Views. Compr Rev Food Sci Food Saf 2015; 14:189-204. [DOI: 10.1111/1541-4337.12131] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/19/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Tharcilla Isabella Rodrigues Costa Alvarenga
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; Cowra NSW 2794 Australia
| | - Yizhou Chen
- NSW Dept. of Primary Industries; Elizabeth Macarthur Agricultural Inst; Menangle NSW 2568 Australia
| | - Iraides Ferreira Furusho-Garcia
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
| | - Juan Ramon Olalquiaga Perez
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
| | - David L. Hopkins
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; Cowra NSW 2794 Australia
| |
Collapse
|
16
|
Powell DA. An overview of patented small molecule stearoyl coenzyme-A desaturase inhibitors (2009 - 2013). Expert Opin Ther Pat 2013; 24:155-75. [PMID: 24251719 DOI: 10.1517/13543776.2014.851669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Stearoyl coenzyme-A desaturase (SCD) is a critical lipogenic enzyme that converts a range of unsaturated lipids to their corresponding monounsaturated fatty acids. Genetic and enzyme-knockdown experiments have suggested an important role of SCD1 in the regulation of various metabolic disorders. With the prognostication that SCD-inhibition may serve to remediate various metabolic diseases, several pharmaceutical companies have embarked on the development of small-molecule SCD-inhibitors, with over 100 patent applications by 17 companies being reported to date. AREAS COVERED Recent progress on the development of SCD-inhibitors, including preclinical efficacy and safety are reviewed. Strategies toward overcoming systemic adverse events and the establishment of a suitable therapeutic margin for clinical studies are discussed. EXPERT OPINION Preclinically, SCD-inhibition leads to reductions in body-weight gain, improvements in glucose clearance and improved liver-lipid profile. However, chronic SCD inhibition in skin and eye-lubricating glands results in undesirable adverse events. Several strategies to overcome these findings have been described, including alternative administration routes for acne or oncology applications, use of potent and rapidly cleared compounds and SCD-inhibitors with a liver-targeted tissue distribution profile. The attainment of sufficient therapeutic margin and robust efficacy for therapeutic applications in humans remains a major frontier for SCD-inhibitors.
Collapse
Affiliation(s)
- David A Powell
- Inception Sciences Canada , 887 Great Northern Way, Suite 210, Vancouver, British Columbia, V5T 4T5 , Canada +1 858 224 7743 ; +1 858 224 7773 ;
| |
Collapse
|
17
|
The evolutionary pattern and the regulation of stearoyl-CoA desaturase genes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:856521. [PMID: 24312911 PMCID: PMC3838806 DOI: 10.1155/2013/856521] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 09/14/2013] [Indexed: 11/23/2022]
Abstract
Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in the biosynthesis of fat. To date, two isoforms of scd gene (scd1 and scd5) have been found widely existent in most of the vertebrate animals. However, the evolutionary patterns of both isofoms and the function of scd5 are poorly understandable. Herein, we aim to characterize the evolutionary pattern of scd genes and further predict the function differentiation of scd genes. The sequences of scd genes were highly conserved among eukaryote. Phylogenetic analysis identified two duplications of scd gene early in vertebrate evolution. The relative rate ratio test, branch-specific dN/dS ratio tests, and branch-site dN/dS ratio tests all suggested that the scd genes were evolved at a similar rate. The evolution of scd genes among eukaryote was under strictly purifying selection though several sites in scd1 and scd5 were undergone a relaxed selection pressure. The variable binding sites by transcriptional factors at the 5′-UTR and by miRNAs at 3′-UTR of scd genes suggested that the regulators of scd5 may be different from that of scd1. This study promotes our understanding of the evolutionary patterns and function of SCD genes in eukaryote.
Collapse
|
18
|
|
19
|
Hodson L, Fielding BA. Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res 2013; 52:15-42. [DOI: 10.1016/j.plipres.2012.08.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 02/07/2023]
|
20
|
Zhang R, Zhu L, Zhang Y, Shao D, Wang L, Gong D. cDNA cloning and the response to overfeeding in the expression of stearoyl-CoA desaturase 1 gene in Landes goose. Gene 2012; 512:464-9. [PMID: 23124044 DOI: 10.1016/j.gene.2012.09.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/16/2012] [Accepted: 09/12/2012] [Indexed: 01/11/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is a rate limiting enzyme in the biosynthesis of monounsaturated fatty acids. It has been cloned from several species: Rattus norvegicus, Mus musculus, Homo Sapiens and Gallus gallus, but not from Anser anser. This study was conducted to isolate the SCD1 cDNA sequence and investigate the effect of overfeeding on SCD1 gene tissue expression in Landes goose. The complete cDNA is 3294 bp in length, with an ORF of 1.083 bp encoding a predicted polypeptide of 360 amino acids and 5'/3'-UTR of 74 and 2137 bp, respectively. Quantitative real time PCR (qPCR) was used to examine SCD1 expression in heart, liver, spleen, lung, kidney, gizzard, glandular stomach, intestine, crureus, pectoral muscle, hypothalamus and adipose tissue (abdominal fat) in both the overfed and control group. SCD1 mRNA was highly expressed in goose fatty liver, and the expression levels of SCD1 in liver and fat of overfeeding group were more than double that of the control group. During the overfeeding period, SCD1 expression in liver and adipose tissue reached the highest level after 70 days, but declined at 79 days. In the control group, after fasting 24h, the expression level of SCD1 gene in tissues declined sharply. However, SCD1 gene expression in hypothalamus was unaffected. The results of this study provide a theoretical basis to study the relationship between SCD1 gene expression and the formation of fatty liver of Landes goose in response to overfeeding.
Collapse
Affiliation(s)
- Rui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Tudisco R, Calabrò S, Cutrignelli M, Moniello G, Grossi M, Gonzalez O, Piccolo V, Infascelli F. Influence of organic systems on Stearoyl-CoA desaturase gene expression in goat milk. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2012.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Sinner DI, Kim GJ, Henderson GC, Igal RA. StearoylCoA desaturase-5: a novel regulator of neuronal cell proliferation and differentiation. PLoS One 2012; 7:e39787. [PMID: 22745828 PMCID: PMC3382174 DOI: 10.1371/journal.pone.0039787] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/30/2012] [Indexed: 12/15/2022] Open
Abstract
Recent studies have demonstrated that human stearoylCoA desaturase-1 (SCD1), a Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, controls the rate of lipogenesis, cell proliferation and tumorigenic capacity in cancer cells. However, the biological function of stearoylCoA desaturase-5 (SCD5), a second isoform of human SCD that is highly expressed in brain, as well as its potential role in human disease, remains unknown. In this study we report that the constitutive overexpression of human SCD5 in mouse Neuro2a cells, a widely used cell model of neuronal growth and differentiation, displayed a greater n-7 MUFA-to-SFA ratio in cell lipids compared to empty-vector transfected cells (controls). De novo synthesis of phosphatidylcholine and cholesterolesters was increased whereas phosphatidylethanolamine and triacylglycerol formation was reduced in SCD5-expressing cells with respect to their controls, suggesting a differential use of SCD5 products for lipogenic reactions. We also observed that SCD5 expression markedly accelerated the rate of cell proliferation and suppressed the induction of neurite outgrowth, a typical marker of neuronal differentiation, by retinoic acid indicating that the desaturase plays a key role in the mechanisms of cell division and differentiation. Critical signal transduction pathways that are known to modulate these processes, such epidermal growth factor receptor (EGFR)Akt/ERK and Wnt, were affected by SCD5 expression. Epidermal growth factor-induced phosphorylation of EGFR, Akt and ERK was markedly blunted in SCD5-expressing cells. Furthermore, the activity of canonical Wnt was reduced whereas the non-canonical Wnt was increased by the presence of SCD5 activity. Finally, SCD5 expression increased the secretion of recombinant Wnt5a, a non-canonical Wnt, whereas it reduced the cellular and secreted levels of canonical Wnt7b. Our data suggest that, by a coordinated modulation of key lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation.
Collapse
Affiliation(s)
- Debora I. Sinner
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio, United States of America
| | - Gretchun J. Kim
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Gregory C. Henderson
- Department of Exercise Science, and Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - R. Ariel Igal
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lengi AJ, Corl BA. Regulation of the bovine SCD5 promoter by EGR2 and SREBP1. Biochem Biophys Res Commun 2012; 421:375-9. [DOI: 10.1016/j.bbrc.2012.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|
24
|
Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer's disease. PLoS One 2011; 6:e24777. [PMID: 22046234 PMCID: PMC3202527 DOI: 10.1371/journal.pone.0024777] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/17/2011] [Indexed: 01/12/2023] Open
Abstract
The molecular bases of Alzheimer's disease (AD) remain unclear. We used a lipidomic approach to identify lipid abnormalities in the brains of subjects with AD (N = 37) compared to age-matched controls (N = 17). The analyses revealed statistically detectable elevations in levels of non-esterified monounsaturated fatty acids (MUFAs) and mead acid (20:3n-9) in mid-frontal cortex, temporal cortex and hippocampus of AD patients. Further studies showed that brain mRNAs encoding for isoforms of the rate-limiting enzyme in MUFAs biosynthesis, stearoyl-CoA desaturase (SCD-1, SCD-5a and SCD-5b), were elevated in subjects with AD. The monounsaturated/saturated fatty acid ratio (‘desaturation index’) – displayed a strong negative correlation with measures of cognition: the Mini Mental State Examination test (r = −0.80; P = 0.0001) and the Boston Naming test (r = −0.57; P = 0.0071). Our results reveal a previously unrecognized role for the lipogenic enzyme SCD in AD.
Collapse
|
25
|
Roles of StearoylCoA Desaturase-1 in the Regulation of Cancer Cell Growth, Survival and Tumorigenesis. Cancers (Basel) 2011; 3:2462-77. [PMID: 24212819 PMCID: PMC3757427 DOI: 10.3390/cancers3022462] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/27/2011] [Accepted: 05/11/2011] [Indexed: 12/24/2022] Open
Abstract
The development and maintenance of defining features of cancer, such as unremitting cell proliferation, evasion of programmed cell death, and the capacity for colonizing local tissues and distant organs, demand a massive production of structural, signaling and energy-storing lipid biomolecules of appropriate fatty acid composition. Due to constitutive activation of fatty acid biosynthesis, cancer cell lipids are enriched with saturated (SFA) and, in particular, monounsaturated fatty acids (MUFA), which are generated by StearoylCoA desaturase-1, the main enzyme that transforms SFA into MUFA. An increasing number of experimental and epidemiological studies suggest that high levels of SCD1 activity is a major factor in establishing the biochemical and metabolic perturbations that favors the oncogenic process. This review examines evidence that suggests the critical implication of SCD1 in the modulation of multiple biological mechanisms, specifically lipid biosynthesis and proliferation and survival signaling pathways that contribute to the development and progression of cancer.
Collapse
|
26
|
Castro LFC, Wilson JM, Gonçalves O, Galante-Oliveira S, Rocha E, Cunha I. The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evol Biol 2011; 11:132. [PMID: 21595943 PMCID: PMC3112091 DOI: 10.1186/1471-2148-11-132] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/19/2011] [Indexed: 12/12/2022] Open
Affiliation(s)
- L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), CIMAR Associate Laboratory, University of Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
27
|
2-Aryl benzimidazoles: Human SCD1-specific stearoyl coenzyme-A desaturase inhibitors. Bioorg Med Chem Lett 2010; 20:6366-9. [DOI: 10.1016/j.bmcl.2010.09.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/18/2022]
|
28
|
Cánovas A, Estany J, Tor M, Pena RN, Doran O. Acetyl-CoA carboxylase and stearoyl-CoA desaturase protein expression in subcutaneous adipose tissue is reduced in pigs selected for decreased backfat thickness at constant intramuscular fat content1. J Anim Sci 2009; 87:3905-14. [DOI: 10.2527/jas.2009-2091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|