1
|
Apoptosis-Like Cell Death in Leishmania major Treated with HESA-A: An Herbal Marine Compound. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.99060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The first drug for the treatment of leishmaniasis is pentavalent antimony compounds which have great side effects. Objectives: This study aimed to assess apoptosis induction by HESA-A, an herbal marine compound in Leishmania major promastigotes. Methods: Leishmania major promastigotes were treated with HESA-A in different increasing concentrations ranged 1.625 - 120 µg/mL, and amphotericin B and the phenomenon of apoptosis in the parasite were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and DNA fragmentation tests. Results: The IC50 value of the compound and amphotericin B at 72 h were estimated at 2.81 µg/mL and 40 µg/mL, respectively. After 72 h of the adjacency of Leishmania major promastigotes with IC50 dose (2.81 µg/mL), the percentage of promastigotes in early and late apoptosis phases in the treated group was 5.4% and 60.4%, respectively. DNA fragmentation of Leishmania major promastigotes treated with 2.81 µg/mL for 72 h was observed. Conclusions: HESA-A, with significant induction of apoptosis in Leishmania major promastigotes, can be plausible in the treatment of cutaneous Leishmaniasis.
Collapse
|
2
|
Piasecki P, Majewska A, Narloch J, Maciak M, Brodaczewska K, Kuc M, Was H, Wierzbicki M, Brzozowski K, Ziecina P, Mazurek A, Dziuk M, Iller E, Kieda C. A new in vitro model applied 90Y microspheres to study the effects of low dose beta radiation on colorectal cancer cell line in various oxygenation conditions. Sci Rep 2021; 11:4472. [PMID: 33627727 PMCID: PMC7904911 DOI: 10.1038/s41598-021-84000-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/10/2021] [Indexed: 11/30/2022] Open
Abstract
We propose a new in vitro model to assess the impact of 90Y-microspheres derived low-dose beta radiation on colorectal cancer cell line under various oxygenation conditions that mimic the tumor environment. Cancer cells (HCT116) proliferation was assessed using Alamar Blue (AB) assay after 48, 72, and 96 h. FLUKA code assessed changes in cancer cell populations relative to the absorbed dose. In normoxia, mitochondrial activity measured by Alamar Blue after 48–72 h was significantly correlated with the number of microspheres (48 h: r = 0.87 and 72 h: r = 0.89, p < 0.05) and absorbed dose (48 h: r = 0.87 and 72 h: r = 0.7, p < 0.05). In hypoxia, the coefficients were r = 0.43 for both the number of spheres and absorbed dose and r = 0.45, r = 0.47, respectively. Impediment of cancer cell proliferation depended on the absorbed dose. Doses below 70 Gy could reduce colorectal cancer cell proliferation in vitro. Hypoxia induced a higher resistance to radiation than that observed under normoxic conditions. Hypoxia and radiation induced senescence in cultured cells. The new in vitro model is useful for the assessment of 90Y radioembolization effects at the micro-scale.
Collapse
Affiliation(s)
- Piotr Piasecki
- Department of Interventional Radiology, Military Institute of Medicine, Szaserow 128, 01-141, Warsaw, Poland
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jerzy Narloch
- Department of Interventional Radiology, Military Institute of Medicine, Szaserow 128, 01-141, Warsaw, Poland.
| | - Maciej Maciak
- Radiological Metrology and Biomedical Physics Division, National Centre for Nuclear Research, Otwock, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Michal Kuc
- Radiological Metrology and Biomedical Physics Division, National Centre for Nuclear Research, Otwock, Poland
| | - Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Marek Wierzbicki
- Department of Interventional Radiology, Military Institute of Medicine, Szaserow 128, 01-141, Warsaw, Poland
| | - Krzysztof Brzozowski
- Department of Interventional Radiology, Military Institute of Medicine, Szaserow 128, 01-141, Warsaw, Poland
| | - Piotr Ziecina
- Department of Interventional Radiology, Military Institute of Medicine, Szaserow 128, 01-141, Warsaw, Poland
| | - Andrzej Mazurek
- Department of Nuclear Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Miroslaw Dziuk
- Department of Nuclear Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Edward Iller
- POLATOM Radioisotope Centre, National Centre for Nuclear Research, Otwock, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
3
|
Rufino-González Y, Ponce-Macotela M, García-Ramos JC, Martínez-Gordillo MN, Galindo-Murillo R, González-Maciel A, Reynoso-Robles R, Tovar-Tovar A, Flores-Alamo M, Toledano-Magaña Y, Ruiz-Azuara L. Antigiardiasic activity of Cu(II) coordination compounds: Redox imbalance and membrane damage after a short exposure time. J Inorg Biochem 2019; 195:83-90. [DOI: 10.1016/j.jinorgbio.2019.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/09/2023]
|
4
|
Margraf-Ferreira A, Carvalho ICS, Machado SM, Pacheco-Soares C, Galvão CW, Etto RM, da Silva NS. DNA analysis of cattle parasitic protozoan Tritrichomonas foetus after photodynamic therapy. Photodiagnosis Photodyn Ther 2017; 18:193-197. [PMID: 28238893 DOI: 10.1016/j.pdpdt.2017.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 11/15/2022]
Abstract
Photodynamic therapy (PDT) is a modality of therapy that involves the activation of photosensitive substances and the generation of cytotoxic oxygen species and free radicals to promote the selective destruction of target tissues. This study analyzed the application of PDT to Tritrichomonas foetus, a scourged and etiological agent of bovine trichomoniasis, a sexually transmitted infectious disease. As it is an amitochondrial and aerotolerant protozoan, it produces energy under low O2 tension via hydrogenosome. T. foetus from an axenic culture was incubated with photosensitizer tetrasulfonated aluminium phthalocyanine and then irradiated with a laser source (InGaAIP) at a density of 4.5Jcm-2. The DNA integrity of the control and treated group parasites was analyzed by conventional gel electrophoresis and comet assay techniques. In previous results, morphological changes characterized by apoptotic cell death were observed after T. foetus was submitted to PDT treatment. In the treated groups, T. foetus DNA showed a higher concentration of small fragments, about 200pb, in gel electrophoresis after PDT. In the comet assay, the DNA tail percentage was significantly higher in the treated groups. These results demonstrate that PDT leads to DNA fragmentation with changes in nuclear morphology and apoptotic features.
Collapse
Affiliation(s)
- A Margraf-Ferreira
- Research and Development Institute, UNIVAP, São José dos Campos, SP 12244-000, Brazil
| | - I C S Carvalho
- Biosciences and Oral Diagnosis Department, ICT/UNESP, São José dos Campos, SP, Brazil
| | - S M Machado
- Research and Development Institute, UNIVAP, São José dos Campos, SP 12244-000, Brazil
| | - C Pacheco-Soares
- Research and Development Institute, UNIVAP, São José dos Campos, SP 12244-000, Brazil
| | - C W Galvão
- Structural, Molecular and Genetics Biology Department, UEPG, Ponta Grossa, PR, Brazil
| | - R M Etto
- Chemistry Department, UEPG, Ponta Grossa, PR, Brazil
| | - N S da Silva
- Research and Development Institute, UNIVAP, São José dos Campos, SP 12244-000, Brazil.
| |
Collapse
|
5
|
Abstract
Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals.
Collapse
|
6
|
Klemenčič M, Dolinar M. Orthocaspase and toxin-antitoxin loci rubbing shoulders in the genome of Microcystis aeruginosa PCC 7806. Curr Genet 2016; 62:669-675. [PMID: 26968707 DOI: 10.1007/s00294-016-0582-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
Abstract
Programmed cell death in multicellular organisms is a coordinated and precisely regulated process. On the other hand, in bacteria we have little clue about the network of interacting molecules that result in the death of a single cell within a population or the death of almost complete population, such as often observed in cyanobacterial blooms. With the recent discovery that orthocaspase MaOC1 of the cyanobacterium Microcystis aeruginosa is an active proteolytic enzyme, we have gained a possible hint about at least one step in the process, but the picture is far from complete. Interestingly, the genomic context of MaOC1 revealed the presence of multiple copies of genes that belong to toxin-antitoxin modules. It has been speculated that these also play a role in bacterial programmed cell death. The discovery of two components linked to cell death within the same genomic region could open new ways to deciphering the underlying mechanisms of cyanobacterial cell death.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
|
8
|
Murik O, Elboher A, Kaplan A. Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2014; 202:471-484. [PMID: 24345283 DOI: 10.1111/nph.12649] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/18/2013] [Indexed: 05/06/2023]
Abstract
Chlamydomonas reinhardtii tolerates relatively high H2 O2 levels that induce an array of antioxidant activities. However, rather than rendering the cells more resistant to oxidative stress, the cells become far more sensitive to an additional H2 O2 dose. If H2 O2 is provided 1.5-9 h after an initial dose, it induces programmed cell death (PCD) in the wild-type, but not in the dum1 mutant impaired in the mitochondrial respiratory complex III. This mutant does not exhibit a secondary oxidative burst 4-5 h after the inducing H2 O2 , nor does it activate metacaspase-1 after the second H2 O2 treatment. The intracellular dehydroascorbate level, a product of ascorbate peroxidase, increases under conditions leading to PCD. The addition of dehydroascorbate induces PCD in the wild-type and dum1 cultures, but higher levels are required in dum1 cells, where it is metabolized faster. The application of dehydroascorbate induces the expression of metacaspase-2, which is much stronger than the expression of metacaspase-1. The presence or absence of oxidative stress, in addition to the rise in internal dehydroascorbate, may determine which metacaspase is activated during Chlamydomonas PCD. Cell death is strongly affected by the timing of H2 O2 or dehydroascorbate admission to synchronously grown cultures, suggesting that the cell cycle phase may distinguish cells that perish from those that do not.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Ahinoam Elboher
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
9
|
Kunikowska A, Byczkowska A, Kaźmierczak A. Kinetin induces cell death in root cortex cells of Vicia faba ssp. minor seedlings. PROTOPLASMA 2013; 250:851-61. [PMID: 23143313 PMCID: PMC3728429 DOI: 10.1007/s00709-012-0466-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/24/2012] [Indexed: 05/09/2023]
Abstract
The double fluorescence staining with acridine orange and ethidium bromide (AO/EB) revealed that treatment of Vicia faba ssp. minor seedlings with kinetin-induced programmed cell death (PCD) in root cortex cells. Kinetin-induced cell death reflected by the morphological changes of nuclei including their invagination, volume increase, chromatin condensation and degradation as well as formation of micronuclei showed by AO/EB and 4,6-diamidino-2-phenylindol staining was accompanied by changes including increase in conductivity of cell electrolytes secreted to culture media, decrease in the number of the G1- and G2-phase cells and appearance of fraction of hypoploid cells as the effect of DNA degradation without ladder formation. Decrease in the number of mitochondria and in the activity of cellular dehydrogenases, production of reactive oxygen species (ROS), appearance of small and then large lytic vacuoles and increase in the amount of cytosolic calcium ions were also observed. The PCD was also manifested by increased width and weight of apical fragments of roots as well as decreased length of cortex cells which led to shortening of the whole roots. The kinetin-induced PCD process was almost completely inhibited by adenine, an inhibitor of phosphoribosyl transferase, and mannitol, an inhibitor of ROS production. These cell-death hallmarks and pathway of this process suggested that the induction of kinetin-specific vacuolar type of death, expressed itself with similar intensity on both morphological and metabolic levels, was a transient protecting whole roots and whole seedlings against elimination.
Collapse
Affiliation(s)
- Anita Kunikowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland
| | - Anna Byczkowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland
| |
Collapse
|
10
|
Shapiro JA. How life changes itself: the Read-Write (RW) genome. Phys Life Rev 2013; 10:287-323. [PMID: 23876611 DOI: 10.1016/j.plrev.2013.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 01/06/2023]
Abstract
The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences.
Collapse
Affiliation(s)
- James A Shapiro
- Dept. of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA. http://www.huffingtonpost.com/james-a-shapiro
| |
Collapse
|
11
|
The involvement of acetic acid in programmed cell death for the elimination of Bacillus sp. used in bioremediation. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2012. [DOI: 10.1016/j.jgeb.2012.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
The oxidized phospholipid PazePC modulates interactions between Bax and mitochondrial membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2718-24. [DOI: 10.1016/j.bbamem.2012.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 01/01/2023]
|
13
|
Wloch-Salamon D, Bem A. Types of cell death and methods of their detection in yeast Saccharomyces cerevisiae. J Appl Microbiol 2012; 114:287-98. [DOI: 10.1111/jam.12024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/13/2012] [Accepted: 09/19/2012] [Indexed: 12/16/2022]
Affiliation(s)
- D.M. Wloch-Salamon
- Institute of Environmental Sciences; Jagiellonian University; Krakow Poland
| | - A.E. Bem
- Host-Microbe Interactomics; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
14
|
Apoptosis-like programmed cell death induces antisense ribosomal RNA (rRNA) fragmentation and rRNA degradation in Leishmania. Cell Death Differ 2012; 19:1972-82. [PMID: 22767185 PMCID: PMC3504711 DOI: 10.1038/cdd.2012.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Few natural antisense (as) RNAs have been reported as yet in the unicellular protozoan Leishmania. Here, we describe that Leishmania produces natural asRNAs complementary to all ribosomal RNA (rRNA) species. Interestingly, we show that drug-induced apoptosis-like programmed cell death triggers fragmentation of asRNA complementary to the large subunit gamma (LSU-γ) rRNA, one of the six 28S rRNA processed fragments in Leishmania. Heat and oxidative stress also induce fragmentation of asrRNA, but to a lesser extent. Extensive asrRNA cleavage correlates with rRNA breakdown and translation inhibition. Indeed, overexpression of asLSU-γ rRNA accelerates rRNA degradation upon induction of apoptosis. In addition, we provide mechanistic insight into the regulation of apoptosis-induced asrRNA fragmentation by a 67 kDa ATP-dependent RNA helicase of the DEAD-box subfamily. This helicase binds both sense (s)LSU-γ and asLSU-γ rRNAs, and appears to have a key role in protecting rRNA from degradation by preventing asrRNA cleavage and thus cell death. Remarkably, the asrRNA fragmentation process operates not only in trypanosomatid protozoa but also in mammals. Our findings uncover a novel mechanism of regulation involving asrRNA fragmentation and rRNA breakdown, that is triggered by apoptosis and conditions of reduced translation under stress, and seems to be evolutionary conserved.
Collapse
|
15
|
Clapp C, Portt L, Khoury C, Sheibani S, Eid R, Greenwood M, Vali H, Mandato CA, Greenwood MT. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells. Front Oncol 2012; 2:59. [PMID: 22708116 PMCID: PMC3374133 DOI: 10.3389/fonc.2012.00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis, we screened a human heart cDNA expression library in yeast cells undergoing PCD due to the conditional expression of a mammalian pro-apoptotic Bax cDNA. Analysis of the multiple Bax suppressors identified revealed several previously known as well as a large number of clones representing potential novel anti-apoptotic sequences. The focus of this review is to report on recent achievements in the use of humanized yeast in genetic screens to identify novel stress-induced PCD suppressors, supporting the use of yeast as a unicellular model organism to elucidate anti-apoptotic and cell survival mechanisms.
Collapse
Affiliation(s)
- Caitlin Clapp
- Department of Chemistry and Chemical Engineering, Royal Military College Kingston, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
SUMMARYProgrammed cell death (PCD) has been observed in many unicellular eukaryotes; however, in very few cases have the pathways been described. Recently the early divergent amitochondrial eukaryote Giardia has been included in this group. In this paper we investigate the processes of PCD in Giardia. We performed a bioinformatics survey of Giardia genomes to identify genes associated with PCD alongside traditional methods for studying apoptosis and autophagy. Analysis of Giardia genomes failed to highlight any genes involved in apoptotic-like PCD; however, we were able to induce apoptotic-like morphological changes in response to oxidative stress (H2O2) and drugs (metronidazole). In addition we did not detect caspase activity in induced cells. Interestingly, we did observe changes resembling autophagy when cells were starved (staining with MDC) and genome analysis revealed some key genes associated with autophagy such as TOR, ATG1 and ATG 16. In organisms such as Trichomonas vaginalis, Entamoeba histolytica and Blastocystis similar observations have been made but no genes have been identified. We propose that Giardia possess a pathway of autophagy and a form of apoptosis very different from the classical known mechanism; this may represent an early form of programmed cell death.
Collapse
|
17
|
On Programmed Cell Death in Plasmodium falciparum: Status Quo. J Trop Med 2012; 2012:646534. [PMID: 22287973 PMCID: PMC3263642 DOI: 10.1155/2012/646534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 09/16/2011] [Indexed: 11/25/2022] Open
Abstract
Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD) in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction.
Collapse
|
18
|
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: a review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:238-59. [PMID: 20969895 DOI: 10.1016/j.bbamcr.2010.10.010] [Citation(s) in RCA: 436] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023]
Abstract
Type I programmed cell death (PCD) or apoptosis is critical for cellular self-destruction for a variety of processes such as development or the prevention of oncogenic transformation. Alternative forms, including type II (autophagy) and type III (necrotic) represent the other major types of PCD that also serve to trigger cell death. PCD must be tightly controlled since disregulated cell death is involved in the development of a large number of different pathologies. To counter the multitude of processes that are capable of triggering death, cells have devised a large number of cellular processes that serve to prevent inappropriate or premature PCD. These cell survival strategies involve a myriad of coordinated and systematic physiological and genetic changes that serve to ward off death. Here we will discuss the different strategies that are used to prevent cell death and focus on illustrating that although anti-apoptosis and cellular survival serve to counteract PCD, they are nevertheless mechanistically distinct from the processes that regulate cell death.
Collapse
Affiliation(s)
- Liam Portt
- Department of Chemistry and Chemical Engineering, Royal Military College, Ontario, Canada
| | | | | | | | | |
Collapse
|