1
|
Romano MZ, Boccella S, Venditti M, Maione S, Minucci S. Morphological and molecular changes in the Harderian gland of streptozotocin-induced diabetic rats. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:915-924. [PMID: 37522474 DOI: 10.1002/jez.2741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/15/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Using a rat model of type 1 diabetes (T1D) obtained by treatment with streptozotocin, an antibiotic that destroys pancreatic β-cells, we evaluated the influence of subsequent hyperglycemia on the morphology and physiology of the Harderian gland (HG). HG is located in the medial corner of the orbit of many terrestrial vertebrates and, in rodents, is characterized by the presence of porphyrins, which being involved in the phototransduction, through photo-oxidation, produce reactive oxygen species activating the autophagy pathway. The study focused on the expression of some morphological markers involved in cell junction formation (occludin, connexin-43, and α-tubulin) and mast cell number (MCN), as well as autophagic and apoptotic pathways. The expression of enzymes involved in steroidogenesis [steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase (3β-HSD)] and the level of lipid peroxidation by thiobarbituric acid reactive species assay were also evaluated. The results strongly indicate, for the first time, that T1D has a negative impact on the pathophysiology of rat HG, as evidenced by increased oxidative stress, morphological and biochemical alterations, hyperproduction and secretion of porphyrins, increased MCN, reduced protein levels of StAR and 3β-HSD, and, finally, induced autophagy and apoptosis. All the combined data support the use of the rat HG as a suitable experimental model to elucidate the molecular damage/survival pathways elicited by stress conditions.
Collapse
Affiliation(s)
- Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Serena Boccella
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Sabatino Maione
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
2
|
Falvo S, Santillo A, Di Fiore MM, Rosati L, Chieffi Baccari G. JNK/Elk1 signaling and PCNA protein expression in the brain of hibernating frog Pelophylax esculentus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:529-536. [PMID: 33970561 DOI: 10.1002/jez.2473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Mitogen activated protein kinase (MAPK) activation and neurogenesis are known to play a role in neuronal survival during hibernation. Herein, we investigate the activity of c-Jun N-terminal kinases (JNK) and Ets like-1 protein (Elk1) kinase involved in cell survival, as well as the expression of proliferating cell nuclear antigen (PCNA), a cell proliferation marker, in the brain of the frog Pelophylax esculentus. The study was conducted on female and male frogs collected during the annual cycle. Our results demonstrated that JNK activity increased during the hibernating phase in relation to the active phase. Interestingly, P-Elk1 levels were positively correlated with P-JNK levels, suggesting that the JNK/Elk1 pathway is pivotal in mediating neuroprotective adaptations that are essential to successful hibernation. On the contrary, we detected higher PCNA expression levels during the active period compared with the hibernating period. A sex dimorphism was observed in the expression levels of P-JNK/P-Elk1 that were specifically higher in males, and in the expression of PCNA reporting higher levels in female brains. Much remains to be learned regarding the regulation of hibernation, however, our findings provide new insights into the role of MAPK and proliferative pathways in hibernation, adding new knowledge concerning the mechanisms activated in the brain of ectothermic species to counteract the damage resulting from extreme temperatures.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli studi di Napoli Federico II, Naples, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
3
|
Santillo A, Chieffi Baccari G, Minucci S, Falvo S, Venditti M, Di Matteo L. The Harderian gland: Endocrine function and hormonal control. Gen Comp Endocrinol 2020; 297:113548. [PMID: 32679156 DOI: 10.1016/j.ygcen.2020.113548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
The Harderian gland (HG) is an exocrine gland located within the eye socket in a variety of tetrapods. During the 1980s and 1990s the HG elicited great interest in the scientific community due to its morphological and functional complexity, and from a phylogenetic point of view. A comparative approach has contributed to a better understanding of its physiology. Whereas the chemical nature of its secretions (mucous, serous or lipids) varies between different groups of tetrapods, the lipids represent the more common component among different species. Indeed, besides being an accessory to lubricate the nictitating membrane, the lipids may have a pheromonal function. Porphyrins and melatonin secretion is a feature of the rodent HG. The porphyrins, being phototransducers, could modulate HG melatonin production. The melatonin synthesis suggests an involvement of the HG in the retinal-pineal axis. Finally, StAR protein and steroidogenic enzyme activities in the rat HG suggests that the gland contributes to steroid hormone synthesis. Over the past twenty years, much has become known on the hamster (Mesocricetus auratus) HG, unique among rodents in displaying a remarkable sexual dimorphism concerning the contents of porphyrins and melatonin. Mainly for this reason, the hamster HG has been used as a model to compare, under normal conditions, the physiological oxidative stress between females (strong) and males (moderate). Androgens are responsible for the sexual dimorphism in hamster and they are known to control the HG secretory activity in different species. Furthermore, HG is a target of pituitary, pineal and thyroid hormones. This review offers a comparative panorama of the endocrine activity of the HG as well as the hormonal control of its secretory activity, with a particular emphasis on the sex dimorphic aspects of the hamster HG.
Collapse
Affiliation(s)
- Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy.
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Loredana Di Matteo
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| |
Collapse
|
4
|
Pinelli C, Santillo A, Chieffi Baccari G, Falvo S, Di Fiore MM. Effects of chemical pollutants on reproductive and developmental processes in Italian amphibians. Mol Reprod Dev 2019; 86:1324-1332. [DOI: 10.1002/mrd.23165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia Pinelli
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| |
Collapse
|
5
|
Falvo S, Chieffi Baccaria G, Spaziano G, Rosati L, Venditti M, Di Fiore MM, Santillo A. StAR protein and steroidogenic enzyme expressions in the rat Harderian gland. C R Biol 2018. [PMID: 29534958 DOI: 10.1016/j.crvi.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Harderian gland (HG) of the rat (Rattus norvegicus) secretes copious amounts of lipids, such as cholesterol. Here we report a study of the expressions of the StAR protein and key steroidogenic enzymes in the HG of male and female rats. The objective of the present investigation was to ascertain (a) whether the rat HG is involved in steroid production starting with cholesterol, and (b) whether the pattern of gene and protein expressions together with the enzymatic activities display sexual dimorphism. The results demonstrate, for the first time, the expression of StAR gene and protein, and Cyp11a1, Hsd3b1, Hsd17b3, Srd5a1, Srd5a2 and Cyp19a1 genes in the rat HG. StAR mRNA and protein expressions were much greater in males than in females. Immunohistochemical analysis demonstrated a non-homogeneous StAR distribution among glandular cells. Hsd17b3 and Cyp19a1 mRNA levels were higher in males than in females, whereas Srd5a1 mRNA levels were higher in females than in males. No significant differences were observed in mRNA levels of Cyp11a1, Hsd3b1 and Srd5a2 between sexes. Furthermore, the in vitro experiments demonstrated a higher 5α-reductase activity in the female as compared to the male HG vice versa a higher P450 aro activity in males as compared to females. These results suggest that the Harderian gland can be classified as a steroidogenic tissue because it synthesizes cholesterol, expresses StAR and steroidogenic enzymes involved in both androgen and estrogen synthesis. The dimorphic expression and activity of the steroidogenic enzymes may suggest sex-specific hormonal effects into the HG physiology.
Collapse
Affiliation(s)
- Sara Falvo
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Gabriella Chieffi Baccaria
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, School of Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Luigi Rosati
- Department of Biology, Federico II Naples University, Napoli, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, School of Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Maria Maddalena Di Fiore
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Alessandra Santillo
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy.
| |
Collapse
|
6
|
Santillo A, Falvo S, Di Fiore MM, Chieffi Baccari G. Seasonal changes and sexual dimorphism in gene expression of StAR protein, steroidogenic enzymes and sex hormone receptors in the frog brain. Gen Comp Endocrinol 2017; 246:226-232. [PMID: 28027903 DOI: 10.1016/j.ygcen.2016.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
Abstract
The brain of amphibians contains all the key enzymes of steroidogenesis and has a high steroidogenic activity. In seasonally-breeding amphibian species brain steroid levels fluctuate synchronously with the reproductive cycle. Here we report a study of gene expression of StAR protein, key steroidogenic enzymes and sex hormone receptors in the telencephalon (T) and diencephalon-mesencephalon (D-M) of male and female reproductive and post-reproductive Pelophylax esculentus, a seasonally breeding anuran amphibian. Significant differences in gene expression were observed between (a) the reproductive and post-reproductive phase, (b) the two brain regions and (c) male and female frogs. During the reproductive phase, star gene expression increased in the male (both T and D-M) but not in the female brain. Seasonal fluctuations in expression levels of hsd3b1, hsd17b1, srd5a1 and cyp19a1 genes for neurosteroidogenic enzymes occurred in D-M region of both sexes, with the higher levels in reproductive period. Moreover, the D-M region generally showed higher levels of gene expression than the T region in both sexes. Gene expression was higher in females than males for most genes, suggesting higher neurosteroid production in female brain. Seasonal and sex-linked changes were also observed in gene expression for androgen (ar) and estrogen (esr1, esr2) receptors, with the males showing the highest ar levels in reproductive phase and the highest esr1 and esr2 levels in post-reproductive phase; in contrast, females showed the maximum expression for all three genes in reproductive phase. The results are the first evidence for seasonal changes and sexual dimorphism of gene expression of the neurosteroidogenic pathway in amphibians.
Collapse
Affiliation(s)
- Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy.
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy
| |
Collapse
|
7
|
Santillo A, Burrone L, Falvo S, Senese R, Lanni A, Chieffi Baccari G. Triiodothyronine induces lipid oxidation and mitochondrial biogenesis in rat Harderian gland. J Endocrinol 2013; 219:69-78. [PMID: 23873539 DOI: 10.1530/joe-13-0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The rat Harderian gland (HG) is an orbital gland producing a copious lipid secretion. Recent studies indicate that its secretory activity is regulated by thyroid hormones. In this study, we found that both isoforms of the thyroid hormone receptor (Trα (Thra) and Trβ (Thrb)) are expressed in rat HGs. Although Thra is expressed at a higher level, only Thrb is regulated by triiodothyronine (T3). Because T3 induces an increase in lipid metabolism in rat HGs, we investigated the effects of an animal's thyroid state on the expression levels of carnitine palmitoyltransferase-1A (Cpt1a) and carnitine palmitoyltransferase-1B (Cpt1b) and acyl-CoA oxidase (Acox1) (rate-limiting enzymes in mitochondrial and peroxisomal fatty acid oxidation respectively), as well as on the mitochondrial compartment, thereby correlating mitochondrial activity and biogenesis with morphological analysis. We found that hypothyroidism decreased the expression of Cpt1b and Acox1 mRNA, whereas the administration of T3 to hypothyroid rats increased transcript levels. Respiratory parameters and catalase protein levels provided further evidence that T3 modulates mitochondrial and peroxisomal activities. Furthermore, in hypothyroid rat HGs, the mitochondrial number and their total area decreased with respect to the controls, whereas the average area of the individual mitochondrion did not change. However, the average area of the individual mitochondrion was reduced by ∼50% in hypothyroid T3-treated HGs, and the mitochondrial number and the total area of the mitochondrial compartment increased. The mitochondrial morphometric data correlated well with the molecular results. Indeed, hypothyroid status did not modify the expression of mitochondrial biogenesis genes such as Ppargc1a, Nrf1 and Tfam, whereas T3 treatment increased the expression level of these genes.
Collapse
Affiliation(s)
- A Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, via Vivaldi, 43, 81100 Caserta, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Rehorek SJ, Grand-Pierre AE, Cummings JR, Jewell B, Constantine J, Hillenius WJ. A re-examination and re-evaluation of salamander orbital glands. Anat Rec (Hoboken) 2013; 296:1789-96. [PMID: 24106029 DOI: 10.1002/ar.22782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 11/06/2022]
Abstract
The amphibian integument contains numerous multicellular glands. Although two of these, the nasolabial and orbital glands and the associated nasolacrimal duct (NLD), have historically received considerable attention, interpretation of the original observations can be problematic in the context of current literature. Salamanders, in particular, are frequently regarded as at least indicative of aspects of the morphology of the common ancestor to all extant tetrapods; hence, an understanding of these glands in salamanders might prove to be informative about their evolution. For this study, the orbitonasal region of salamanders from three families was histologically examined. Three themes emerged: (1) examination of the effect of phylogeny on the nasolabial gland and NLD revealed a combination of features that may be unique to plethodontid salamanders, and may be correlated to their nose-tapping behavior by which substances are moved into the vomeronasal organ; (2) ecology appears to impact the relative development of the orbital glands, but not necessarily the nasolabial gland, with smaller glands being present in the aquatic species; (3) the nomenclature of the salamander orbital gland remains problematic, especially in light of comparative studies, as several alternate possibilities are viable. From this nomenclatural conundrum, however, it could be concluded that there may be a global pattern in the location of tetrapod orbital gland development. Molecular questions in terms of ontogeny and genetic homology affect the nature of the debate on orbital gland nomenclature. These observations suggest that rather than reflecting an ancestral condition, salamanders may instead represent a case of specialized, convergent evolution.
Collapse
Affiliation(s)
- Susan J Rehorek
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania
| | | | | | | | | | | |
Collapse
|