1
|
Functional Characterization and Molecular Marker Development of the Proenkephalin as Biomarker of Food Addiction in Food Habit Domestication of Mandarin Fish (Siniperca Chuatsi). FISHES 2022. [DOI: 10.3390/fishes7030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proenkephalin (PENK), as the precursor of endogenous opioid enkephalin (ENK), is widely present in the nervous system and plays an important role in animal food addiction and rewarding behavior. In our study, we intend to study the functional characterization and molecular marker development of the penk gene related to food habit domestication of mandarin fish. We found that the penk gene of mandarin fish had three types of endogenous opioid peptide sequences. Compared with other tissues, penk mRNA was highly expressed in the whole brain. Intracerebroventricular (ICV) injection of lysine or methionine significantly increased the expression of penk mRNA. The expression of penk mRNA in the brain of mandarin fish that could be easily domesticated from eating live prey fish to artificial diets was significantly higher than those that could not. After feeding with high-carbohydrate artificial diets, the expression of penk mRNA showed no significant difference between mandarin fish with hypophagia and those that still ate normally. A total of four single nucleotide polymorphisms (SNP) loci related to easy domestication toward eating artificial diets were screened from the mandarin fish population. Additionally, the TT genotype at one of the loci was significantly correlated with the food habit domestication of mandarin fish.
Collapse
|
2
|
Bao W, Volgin AD, Alpyshov ET, Friend AJ, Strekalova TV, de Abreu MS, Collins C, Amstislavskaya TG, Demin KA, Kalueff AV. Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish. Neuroscience 2019; 404:218-232. [PMID: 30710667 DOI: 10.1016/j.neuroscience.2019.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Despite the high prevalence of medicinal use and abuse of opioids, their neurobiology and mechanisms of action are not fully understood. Experimental (animal) models are critical for improving our understanding of opioid effects in vivo. As zebrafish (Danio rerio) are increasingly utilized as a powerful model organism in neuroscience research, mounting evidence suggests these fish as a useful tool to study opioid neurobiology. Here, we discuss the zebrafish opioid system with specific focus on opioid gene expression, existing genetic models, as well as its pharmacological and developmental regulation. As many human brain diseases involve pain and aberrant reward, we also summarize zebrafish models relevant to opioid regulation of pain and addiction, including evidence of functional interplay between the opioid system and central dopaminergic and other neurotransmitter mechanisms. Additionally, we critically evaluate the limitations of zebrafish models for translational opioid research and emphasize their developing utility for improving our understanding of evolutionarily conserved mechanisms of pain-related, addictive, affective and other behaviors, as well as for fostering opioid-related drug discovery.
Collapse
Affiliation(s)
- Wandong Bao
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Andrey D Volgin
- Military Medical Academy, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Erik T Alpyshov
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tatyana V Strekalova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Christopher Collins
- ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA.
| |
Collapse
|
3
|
Chen LT, Jiang CY. Bioinformatics analysis of sex differences in arrhythmogenic right ventricular cardiomyopathy. Mol Med Rep 2019; 19:2238-2244. [PMID: 30664203 PMCID: PMC6390068 DOI: 10.3892/mmr.2019.9873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited disease that exhibits sex differences on clinical presentation. The present study aimed to investigate the sex differences associated with ARVC by conducting an integrated bioinformatics analysis. The GSE29819 gene expression dataset was downloaded from the Gene Expression Omnibus database. The online analytical tool GEO2R was then used to screen for differentially expressed genes (DEGs), which were subsequently processed using enrichment analysis and protein‑protein interaction (PPI) network construction. Functional annotation of the DEGs was determined using ClueGO. The PPI network was constructed with Search Tool for the Retrieval of Interacting Genes, and was visualized with Cytoscape to identify the modules and hub genes. Compared with the female group, a total of 1,188 DEGs, of which 915 were upregulated and 273 were downregulated, were identified in the male group. The enrichment analysis revealed that in KEGG pathways, the upregulated DEGs were substantially enriched in the 'nicotine addiction' pathways, whereas the downregulated DEGS were mainly enriched in the 'ECM‑receptor interaction' and 'protein digestion and absorption' pathways. The PPI network contained 899 nodes and 1,627 edges, among which four significant modules were identified. In addition, kininogen 1, lysophosphatidic acid receptor 5, formyl peptide receptor (FPR) 2, adenylate cyclase 2, γ‑aminobutyric acid type B receptor subunit 2, FPR1, hydroxycarboxylic acid receptor 1, prostaglandin E receptor 3, cannabinoid receptor 1 and proenkephalin were identified as the top 10 hub genes. The key genes and related pathways identified in this study provide genetic insight into the diversity in phenotypes between female and male patients with ARVC, and may facilitate therapeutic individualization.
Collapse
Affiliation(s)
- Lai-Te Chen
- Department of Cardiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Chen-Yang Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
5
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|