1
|
Li L, He S, Lin MH, Zhang YP, Kuhl H, Liang XF. Whole-genome resequencing and bisulfite sequencing provide new insights into the feeding habit domestication in mandarin fish ( Siniperca chuatsi). Front Genet 2023; 13:1088081. [PMID: 36712873 PMCID: PMC9878154 DOI: 10.3389/fgene.2022.1088081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Mandarin fish (Siniperca chuatsi) is one of the most economically important fish in China. However, it has the peculiar feeding habit that it feeds solely on live prey fish since first-feeding, while refuses dead prey fish or artificial diets. After the specific training procedure, partial individuals could accept dead prey fish and artificial diets. The genetic basis of individual difference in artificial diet feeding habit is still unknown. In the present study, the resequencing was performed between 10 individuals which could be domesticated to accept artificial diets and 10 individuals which could not. Through the selective sweep analysis based on heterozygosity (Hp) and population differentiation coefficient (Fst), 57 candidate windows were identified as the putative selected regions for feeding habit domestication of mandarin fish, involved in 149 genes. These genes were related to memory, vision and olfaction function, which could be potential targets of molecular marker assistant breeding of artificial diet feeding trait. Beside of the DNA sequence, we also explored the potential role of DNA methylation in feeding habit domestication in mandarin fish. Whole-genome bisulfite sequencing was performed between the individuals which could be domesticated to accept artificial diets and those could not. 5,976 differentially methylated regions were identified, referring to 3,522 genes, such as the genes involved in cAMP signaling pathway. The DNA methylation changes of these genes might contribute to the adaption of artificial diets in mandarin fish. In conclusion, the putative selected regions and the differentially methylated regions were identified in the whole genome, providing new insights into the feeding habit domestication from live prey fish to artificial diets in mandarin fish. And the involved genes were identified as the candidate genes for molecular breeding of artificial diet utilization in mandarin fish.
Collapse
Affiliation(s)
- Ling Li
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Shan He
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Ming-Hui Lin
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Yan-Peng Zhang
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Heiner Kuhl
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany,*Correspondence: Xu-Fang Liang, ; Heiner Kuhl,
| | - Xu-Fang Liang
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China,*Correspondence: Xu-Fang Liang, ; Heiner Kuhl,
| |
Collapse
|
2
|
Shi L, Li J, Liang XF, He S, Dou Y, Peng J, Cai W, Liang H. Memory regulation in feeding habit transformation to dead prey fish of Chinese perch (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1893-1907. [PMID: 34581919 DOI: 10.1007/s10695-021-01001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Memory drove a critical process of feeding habit transformation in Chinese perch when they re-trained to eat dead prey fish. To investigate the regulatory mechanism of cAMP-response element-binding protein (CREB) signaling pathway on the memory of Chinese perch during feeding habit transformation, the phosphorylation levels of upstream signal proteins of CREB between the control group (trained once) and the experimental group (trained twice) were measured. The results illustrated that the re-training was correlated to phosphorylation of extracellular regulated protein kinase (ERK1/2) and calcium/calmodulin-dependent protein kinase II (CaMKII), and dephosphorylation of protein kinase A (PKA) of Chinese perch. Inhibition of ERK1/2-CREB pathway decreased the mRNA levels of memory-related genes ((fos-related antigen 2 (fra2), CCAAT enhancer-binding protein delta (c/ebpb), immediate-early gene zif268 (zif268), proto-oncogenes c-fos (c-fox) and synaptotagmin-IV (sytIV)) and mRNA levels of appetite-related genes (agouti-related peptide (agrp) and ghrelin), and activation of PP1-CREB pathway increased the phosphorylated levels of CREB, the mRNA levels of memory-related genes (fra2, c/ebpb, zif268, and c-fox), and the mRNA levels of appetite-related genes (pro-opiomelanocortin (pomc) and leptin) in primary brain cells of Chinese perch. The memory in Chinese perch feeding habit transformation was associated with the ERK1/2-CREB and PP1-CREB pathways, which could regulate the transcription of memory-related genes and appetite-related genes.
Collapse
Affiliation(s)
- Linjie Shi
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiao Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Yaqi Dou
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jian Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wenjing Cai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hui Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
3
|
Jin RM, Huang HZ, Zhou Y, Wang YY, Fu HC, Li Z, Fu XZ, Li NQ. Characterization of mandarin fish (Siniperca chuatsi) IL-6 and IL-6 signal transducer and the association between their SNPs and resistance to ISKNV disease. FISH & SHELLFISH IMMUNOLOGY 2021; 113:139-147. [PMID: 33848638 DOI: 10.1016/j.fsi.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
In fish, interleukin-6 (IL-6) is a very important immune-regulatory cytokine that plays a polyfunctional role in inflammation, metabolism, regeneration, and neural processes. IL-6 signal transducer (IL-6ST) is a specific receptor for IL-6 and expressed mainly in immune cells and hepatocytes. In this study, the complete cDNA and genomic DNA sequences of mandarin fish (Siniperca chuatsi) IL-6 and IL-6ST genes were identified and analyzed. Quantitative real-time PCR showed that IL-6 and IL-6ST were chiefly expressed in the immune organs. After challenge with infectious spleen and kidney necrosis virus (ISKNV), the expression levels of IL-6 were significantly up-regulated after 6 h and 24 h in the head kidney and spleen, respectively (p < 0.01), the peak value for both reached at 72 h, IL-6ST increased significantly after 120 h with a peak at 168 h in the head kidney (p < 0.01) and improved markedly at 168 h in the spleen (p < 0.01). Besides, IL-6 and IL-6ST have been identified 3 and 8 single nucleotide polymorphisms (SNPs), respectively. Statistical analysis showed that one SNP locus (1625C/T) in the coding region of IL-6 was significantly related to the resistance of mandarin fish against ISKNV. The 1625C→T locus in the coding region of IL-6 is a synonymous mutation; compared with the susceptible group, the frequency of allele T in the disease resistance group was significantly higher, which may be due to the rare codon produced by the mutation affecting translation. The involvement of IL-6 and IL-6ST in response to ISKNV infection in mandarin fish clearly indicate that the role of SNP markers in IL-6 was associated with the ISKNV resistance, which was demonstrated for the first time in our results. Thus, the current study may provide fundamental information for further breeding of mandarin fish with resistance to ISKNV infection.
Collapse
Affiliation(s)
- Rui-Ming Jin
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China
| | - He-Zhong Huang
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China.
| | - Yu Zhou
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China
| | - Ying-Ying Wang
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China
| | - Huang-Cui Fu
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China
| | - Ze Li
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Jiangsu Province, Suzhou, 215123, China
| | - Xiao-Zhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Ning-Qiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| |
Collapse
|