1
|
Sun L, Chen Z, Guo L, Geng Z, Chen X. Proteomic Analysis of Egg Yolk Proteins During Embryonic Development in Wanxi White Goose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5212-5221. [PMID: 38433387 DOI: 10.1021/acs.jafc.3c07962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
To investigate the alterations of yolk protein during embryonic development in Wanxi white goose, the egg yolk protein composition at days 0, 4, 7, 14, 18, and 25 of incubation (D0, D4, D7, D14, D18, and D25) was analyzed by two-dimensional gel electrophoresis combined with mass spectrometry. A total of 65 spots representing 11 proteins with significant abundance changes were detected. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin mainly participated in nutrient (lipid, riboflavin, and iron ion) transport, and vitellogenin-2-like showed a lower abundance after D14. Ovomucoid-like were involved in endopeptidase inhibitory activity and immunoglobulin binding and exhibited a higher expression after D18, suggesting a potential role in promoting the absorption of immunoglobulin and providing passive immune protection for goose embryos after D18. Furthermore, myosin-9 and actin (ACTB) were involved in the tight junction pathway, potentially contributing to barrier integrity. Serum albumin mainly participated in cytolysis and toxic substance binding. Therefore, the high expression of serum albumin, myosin-9, and ACTB throughout the incubation might protect the developing embryo. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin might play a crucial role in providing nutrition for embryonic development, and VTG-2-like was preferentially degraded/absorbed.
Collapse
Affiliation(s)
- Linghong Sun
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
- School of Biological Engineering, Huainan Normal University, 232001, Huainan, Anhui 230036, People's Republic of China
| | - Zhengkun Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Liping Guo
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
2
|
Zhang X, Yue X, Ma B, Fu X, Ren H, Ma M. Ultrasonic pretreatment enhanced the glycation of ovotransferrin and improved its antibacterial activity. Food Chem 2020; 346:128905. [PMID: 33401085 DOI: 10.1016/j.foodchem.2020.128905] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
This study aims to evaluate the effect of ultrasonic pretreatment combined with glycation on the structural characteristics and antibacterial activity of ovotransferrin (OVT). Firstly, OVT (purity >90%) was isolated from egg white with a simple and efficient method. After the treatment of ultrasound and glycation, the browning degree of OVT increased with the rising power of ultrasound, while the number of free amino groups obviously decreased to 25.4%. Various spectrum detection showed that the structures of OVT have changed significantly, indicating the tertiary structure became more flexible and looser. The minimal inhibitory concentration of ultrasound glycated OVT were 25.0 and 32.1 μmol/L for E. coli and S. aureus, respectively. In summary, ultrasound-assisted glycation is an effective technique to improve the biological activity of OVT.
Collapse
Affiliation(s)
- Xianli Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaojie Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Bin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, PR China.
| | - Heling Ren
- Collage of Public Administration, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
3
|
Zhu W, Zhang J, He K, Geng Z, Chen X. Proteomic analysis of fertilized egg yolk proteins during embryonic development. Poult Sci 2020; 99:2775-2784. [PMID: 32359615 PMCID: PMC7597458 DOI: 10.1016/j.psj.2019.12.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/10/2023] Open
Abstract
Egg yolk is an important source of nutrients for embryo development. In this study, the egg yolk protein composition at 0, 10, and 18 D of incubation was analyzed by 2-dimensional gel electrophoresis (2-DE) combined with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. A significant difference in the abundance of 42 protein spots representing 12 proteins were identified (P < 0.05). The 2-DE gel image analysis exhibited that the molecular weight (MW) of 29 protein spots was lower than their theoretical value, in which 14 vitellogenin (VTG) fragments were lower than the theoretical value. There were 13 protein spots showed a higher MW including 5 ovotransferrins with MW of 87.2 kDa. The gene ontology enrichment analysis suggested that biological process of the differentially expressed proteins were mainly involved in lipid transport and lipid localization at 10 and 18 D of incubation. The molecular function of the differentially expressed proteins was involved in nutrient reservoir activity, lipid transporter activity, and antigen binding at 10 D of incubation. At 18 D of incubation, the differentially expressed proteins mainly participated in nutrient reservoir activity and substrate-specific transporter activity. The high abundance of VTGs at 10 D of incubation might participate in lipid localization and lipid transportation to facilitate the yolk nutrient transport to embryo. The low expression of ovotransferrins at 10 D of incubation indicated the chondrogenesis of embryo.
Collapse
Affiliation(s)
- Wenjun Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Junzhi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Kaiqin He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, Stockwell BR. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 2018; 32:602-619. [PMID: 29802123 PMCID: PMC6004068 DOI: 10.1101/gad.314674.118] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review by Conrad et al. reviews the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea, and discusses the potential evolutionary roles of lipid peroxidation and ferroptosis. Lipid peroxidation is the process by which oxygen combines with lipids to generate lipid hydroperoxides via intermediate formation of peroxyl radicals. Vitamin E and coenzyme Q10 react with peroxyl radicals to yield peroxides, and then these oxidized lipid species can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and other components of the cellular antioxidant defense network. Ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Here, we review the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea. We also discuss the potential evolutionary roles of lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Environmental Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Laboratory of Navigational Lipidomics of Cell Death and Regeneration, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,Molecular and Cell Biology Graduate Program, Oregon State University, Corvallis, Oregon 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97330, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|