1
|
Wang Y, Xu X, Zhang A, Yang S, Li H. Role of alternative splicing in fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109601. [PMID: 38701992 DOI: 10.1016/j.fsi.2024.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Alternative splicing serves as a pivotal source of complexity in the transcriptome and proteome, selectively connecting various coding elements to generate a diverse array of mRNAs. This process encodes multiple proteins with either similar or distinct functions, contributing significantly to the intricacies of cellular processes. The role of alternative splicing in mammalian immunity has been well studied. Remarkably, the immune system of fish shares substantial similarities with that of humans, and alternative splicing also emerges as a key player in the immune processes of fish. In this review, we offer an overview of alternative splicing and its associated functions in the immune processes of fish, and summarize the research progress on alternative splicing in the fish immunity. Furthermore, we review the impact of alternative splicing on the fish immune system's response to external stimuli. Finally, we present our perspectives on future directions in this field. Our aim is to provide valuable insights for the future investigations into the role of alternative splicing in immunity.
Collapse
Affiliation(s)
- Yunchao Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinyi Xu
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Ailong Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266003, China.
| |
Collapse
|
2
|
Nibona E, Niyonkuru C, Liang X, Yao Q, Zhao H. Essential Roles of PRMT5-MEP50 Complex Formation and Cancer Therapy. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421050064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Ke X, Zhang R, Yao Q, Duan S, Hong W, Cao M, Zhou Q, Zhong X, Zhao H. Alternative splicing of medaka bcl6aa and its repression by Prdm1a and Prdm1b. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1229-1242. [PMID: 34218391 DOI: 10.1007/s10695-021-00980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bcl6 and Prdm1 (Blimp1) are a pair of transcriptional factors that repressing each other in mammals. Prdm1 represses the expression of bcl6 by binding a cis-element of the bcl6 gene in mammals. The homologs of Bcl6 and Prdm1 have been identified in teleost fish. However, whether these two factors regulate each other in the same way in fish like that in mammals is not clear. In this study, the regulation of bcl6aa by Prdm1 was investigated in medaka. The mRNA of bcl6aa has three variants (bcl6aaX1-X3) at the 5'-end by alternative splicing detected by RT-PCR. The three variants can be detected in adult tissues and developing embryos of medaka. Prdm1a and prdm1b are expressed in the tissues and embryos where and when bcl6aa is expressed. The expression of prdm1a was high while the expression of bcl6aa was low, and vice versa, detected in the spleen after stimulation with LPS or polyI:C. In vitro reporter assay indicated that bcl6aa could be directly repressed by both Prdm1a and Prdm1b in a dosage-dependent manner. After mutation of the key base, G, of all predicted binding sites in the core promoter region of bcl6aa, the repression by Prdm1a and/or Prdm1b disappeared. The binding site of Prdm1 in the bcl6aa gene is GAAAA(T/G). These results indicate that both Prdm1a and Prdm1b directly repress the expression of bcl6aa by binding their binding sites where the 5'-G is critical in medaka fish.
Collapse
Affiliation(s)
- Xiaomei Ke
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Runshuai Zhang
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qiting Yao
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Shi Duan
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Wentao Hong
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xueping Zhong
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Haobin Zhao
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
4
|
Chen YC, Li JY, Li CJ, Tsui KH, Wang PH, Wen ZH, Lin LT. Luteal Phase Ovarian Stimulation versus Follicular Phase Ovarian Stimulation results in different Human Cumulus cell genes expression: A pilot study. Int J Med Sci 2021; 18:1600-1608. [PMID: 33746576 PMCID: PMC7976567 DOI: 10.7150/ijms.55955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Luteal-phase ovarian stimulation (LPOS) is an alternative in vitro fertilization (IVF) protocol. However, limited data showed the genes expression of cumulus cells (CCs) in LPOS. Therefore, this study aimed to investigate CC genes expression between LPOS and follicular-phase ovarian stimulation (FPOS) in poor ovarian responders (PORs) undergoing IVF cycles. Methods: This was a prospective non-randomized trial (ClinicalTrials.gov Identifier: NCT03238833). A total of 36 PORs who met the Bologna criteria and underwent IVF cycles were enrolled. Fifteen PORs were allocated to the LPOS group, and 21 PORs were allocated to the FPOS group. The levels of CC genes involved in inflammation (CXCL1, CXCL3, TNF, PTGES), oxidative phosphorylation (NDUFB7, NDUFA4L2, SLC25A27), apoptosis (DAPK3, BCL6B) and metabolism (PCK1, LDHC) were analyzed using real-time quantitative PCR and compared between the two groups. Results: The number of retrieved oocytes, metaphase II oocytes, fertilized oocytes, day-3 embryos and top-quality day-3 embryos, clinical pregnancy rates and live birth rates were similar between the two groups except for significantly high progesterone levels in the LPOS group. The mRNA expression levels of CXCL1 (0.51 vs 1.00, p < 0.001) and PTGES (0.30 vs 1.00, p < 0.01) were significantly lower in the LPOS group than in the FPOS group. The LPOS group had significantly lower mRNA expression of NDUFB7 (0.12 vs 1.00, p < 0.001) and NDUFA4L2 (0.33 vs 1.00, p < 0.01) than the FPOS group. DAPK3 (3.81 vs 1.00, p < 0.05) and BCL6B (2.59 vs 1.00, p < 0.01) mRNA expression was significantly higher in the LPOS group than in the FPOS group. Increased expression of PCK1 (3.13 vs. 1.00, p < 0.001) and decreased expression of LDHC (0.12 vs. 1.00, p < 0.001) were observed in the LPOS group compared to the FPOS group. Conclusions: Our data revealed different CC genes expression involving in inflammation, oxidative phosphorylation, apoptosis and metabolism between LPOS and FPOS in PORs. However, the results are non-conclusive; further large-scale randomized controlled trials are needed to validate the results.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Ju-Yueh Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.,Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei City, Taiwan.,Institute of BioPharmaceutical Sciences, National Sun Yat‑sen University, Kaohsiung City, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei City, Taiwan.,Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei City, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.,Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei City, Taiwan.,Institute of BioPharmaceutical Sciences, National Sun Yat‑sen University, Kaohsiung City, Taiwan
| |
Collapse
|
5
|
Shen H, Nibona E, Xu G, Al Hafiz MA, Ke X, Liang X, Yao Q, Zhong X, Zhou Q, Zhao H. Identification, expression pattern, and immune response of Tim-1 and Tim-4 in embryos and adult medaka (Oryzias latipes). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:235-244. [PMID: 32150339 DOI: 10.1002/jez.b.22939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 11/09/2022]
Abstract
T-cell immunoglobulin (Ig) and mucin domain-containing 1 (Tim-1) and Tim-4 are two members of the Tim family. In mammals, Tim-1 and Tim-4 are proteins mainly expressed in immune cells and are associated with immune response. In the present study, medaka Oryzias latipes' Tim-1 (OlTim-1) and OlTim-4 were identified and characterized using bioinformatics analyses. With the use of reverse-transcription polymerase chain reaction, the expression profiles of OlTim-1 and OlTim-4 were examined in embryos and adult fish and in immune tissues following the intraperitoneal injection of stimulants. The results revealed that OlTim-1 possesses a cytoplasmic region, a transmembrane region, a mucin domain, and an Ig-like domain, while OlTim-4 is composed of two Ig-like domains and a mucin domain, but without the transmembrane region and cytoplasmic region. OlTim-1 and OlTim-4 expressions are detectable from the gastrula stage on, indicating that they are zygotic genes. Furthermore, OlTim-1 and OlTim-4 are expressed ubiquitously in the adult. Administration of immune stimulants, namely lipopolysaccharides and polyinosinic:polycytidylic acid, significantly increased the expression levels of OlTim-1 and OlTim-4 in the liver and intestine within 1 day and in the head, kidney, and spleen within 3 to 4 days postinjection. These results suggest that OlTim-1 and OlTim-4 are possibly involved in both innate and adaptive immunities.
Collapse
Affiliation(s)
- Hao Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Emile Nibona
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Gongyu Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Md Abdullah Al Hafiz
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Xiaomei Ke
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Xiaoting Liang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qiting Yao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Zhang R, Wu K, Ke X, Zhang X, Xu G, Shen H, Nibona E, Al Hafiz A, Liang X, Wang Z, Qi C, Zhou Q, Zhong X, Zhao H. Bcl6aa and bcl6ab are ubiquitously expressed and are inducible by lipopolysaccharide and polyI:C in adult tissues of medaka Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:17-25. [PMID: 30680935 DOI: 10.1002/jez.b.22843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/17/2019] [Indexed: 11/10/2022]
Abstract
B-cell lymphoma-6 (Bcl6) is a transcriptional repressor that plays important roles in various physiological activities such as innate and adaptive immune response, lymphocyte differentiation, and cell cycle regulation in mammals. Two homologs of Bcl6a, namely Bcl6aa and Bcl6ab, are identified in teleost fish including medaka Oryzias latipes. The expression profiles of bcl6aa and bcl6ab in medaka were studied using reverse-transcription polymerase chain reaction and in situ hybridization. The transcripts of bcl6aa and bcl6ab were detected from very early embryos such as the four-cell stage until hatching. Bcl6aa and bcl6ab were clearly detected in the embryonic body from 5 days postfertilization onward by in situ hybridization. Bcl6aa was specifically expressed in the retina, whereas bcl6ab was expressed in entire embryonic body. The results referred to that both bcl6aa and bcl6ab originate maternally in the zygotes and may play major roles in embryogenesis of medaka. The transcripts of bcl6aa and bcl6ab were detected in all examined adult tissues, including immune organs such as the gill, spleen, kidney, liver, and intestine. The expression of bcl6aa and bcl6ab in the liver, spleen, head-kidney, and intestine could be upregulated or downregulated by lipopolysaccharide and polyriboinosinic-polyribocytidylic acid. These results indicate that both bcl6aa and bcl6ab may be involved in immune response in medaka.
Collapse
Affiliation(s)
- Runshuai Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kongyue Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaomei Ke
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueyan Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Gongyu Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hao Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Emile Nibona
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Abdullah Al Hafiz
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaoting Liang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zequn Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|