1
|
Yang M, Zhang M, Li XL, Deng YW, Jiao Y. Transcriptome analysis revealed the function of five tandemly duplicated nAChRs in the transplantation immunity in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109251. [PMID: 38040133 DOI: 10.1016/j.fsi.2023.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in the homeostatic regulation of physiological functions. Our previous studies showed that nAChRs in the genome of pearl oyster Pinctada fucata martensii (PmnAChRs) were expanded through tandem duplication. This study aimed to analyze the function of five tandemly duplicated PmnAChRs in the transplantation immunity in P. f. martensii. Transcriptome analysis reveals that the differentially expressed genes (DEGs) shared between PmnAChR-RNAi and the control group were functionally involved in Signal transduction, Immune system et al., and most of the related genes were down-regulated in the PmnAChR-RNAi group. The different copies of PmnAChR may regulate transplantation immunity through various pathways, such as Wnt, protein digestion and absorption, Hippo, and gap junction pathway. The inflammation factor interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α) were down-regulated in PmnAChR-1, 4, 5-RNAi group, and the serum from the pearl oysters in the PmnAChR-1-4-RNAi group could promote the proliferation of the Vibrio harveyi, indicating the immunosuppressive function after down-regulation of PmnAChRs. The different responses of antioxidant enzymes and diverse signal pathways after down-regulation of PmnAChRs suggested that the five tandemly duplicated PmnAChRs may cooperate with different α type PmnAChRs and constitute the functional ion channel in the membrane. Results of this study not only provide insight for the effective regulation of the transplantation immunity, but also provide a theoretical reference for the study of the adaptive evolutionary mechanism of repeating genes.
Collapse
Affiliation(s)
- Min Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Ming Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Xin Lei Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yue Wen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| |
Collapse
|
2
|
Dai M, Zhang Y, Jiao Y, Deng Y, Du X, Yang C. Immunomodulatory effects of one novel microRNA miR-63 in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2023; 140:109002. [PMID: 37586600 DOI: 10.1016/j.fsi.2023.109002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Novel microRNA miR-63 (novel-miR-63) from pearl oyster Pinctada fucata martensii (Pm-novel-miR-63) is a species-specific miRNA. Our previous research has shown that the expression of Pm-novel-miR-63 was significantly downregulated at 24 h after nucleus transplantation. In this study, we analyzed the function and regulatory role of Pm-novel-miR-63 in the immune response of pearl oysters. The results showed that Pm-novel-miR-63 expression increased after the stimulation of pathogen associated molecular patterns at 6-12 h, and the activity of immune and antioxidant enzymes in the serum decreased after Pm-novel-miR-63 overexpression. Transcriptome analysis revealed that Pm-novel-miR-63 participated in regulating transplantation immunity through the Notch and mRNA surveillance signaling pathways. Target prediction and dual luciferase analysis revealed that Pm-GDP-FucTP, Pm-CysLTR2, and Pm-RLR were the target genes of Pm-novel-miR-63. These results suggested that Pm-novel-miR-63 participated in regulating the immune response in pearl oysters and can serve as a new interference target to reasonably control excessive immune rejection in pearl culture.
Collapse
Affiliation(s)
- Meiqi Dai
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
3
|
Liu Z, An M, Geng X, Wu Z, Cai W, Tang J, Zhang K, Zhou Z. The scleractinian coral Pocillopora damicornis relies on neuroendocrine regulation to cope with polycyclic aromatic hydrocarbons under heat stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120565. [PMID: 36332711 DOI: 10.1016/j.envpol.2022.120565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/05/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic environmental pollutants and are threatening scleractinian corals. In this study, PAHs treatment did not induce significant physiological responses of the coral Pocillopora damicornis and its algal symbionts, but biological processes including response to toxin, drug metabolic, and oxidation reduction were triggered at the mRNA level. These results implied that PAHs could be a group of slow-acting environmental toxicants, whose effects were moderate but persistent. Besides, it was interesting to find that PAHs activated the neuroendocrine system in the coral by triggering the expression of monoaminergic and acetylcholinergic system related genes, indicating that PAHs might function as environmental hormones. Moreover, the combined treatments of PAHs and heat caused a much obvious effect on the coral and its algal symbionts by elevating antioxidant activity and suppressing photosynthesis in the symbionts. Results from the transcriptome data further indicated that corals might perform stress responses upon PAHs and heat challenges through the TNF and apoptosis pathways, which perhaps was modulated by the neuroendocrine system of corals. Collectively, our survey demonstrates that the PAHs can function as environmental hormones and activate the neuroendocrine regulation in scleractinian corals, which may contribute to the stress responses of symbiotic association by modulating photosynthesis, antioxidation, and apoptosis.
Collapse
Affiliation(s)
- Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Xinxing Geng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China; Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Wu H, Yang C, Hao R, Liao Y, Wang Q, Deng Y. Lipidomic insights into the immune response and pearl formation in transplanted pearl oyster Pinctada fucata martensii. Front Immunol 2022; 13:1018423. [PMID: 36275716 PMCID: PMC9585204 DOI: 10.3389/fimmu.2022.1018423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
During pearl culture, the excess immune responses may induce nucleus rejection and death of pearl oysters after transplantation. To better understand the immune response and pearl formation, lipidomic analysis was applied to investigate changes in the serum lipid profile of pearl oyster Pinctada fucata martensii following transplantation. In total, 296 lipid species were identified by absolute quantitation. During wound healing, the content of TG and DG initially increased and then decreased after 3 days of transplantation with no significant differences, while the level of C22:6 decreased significantly on days 1 and 3. In the early stages of transplantation, sphingosine was upregulated, whereas PC and PUFAs were downregulated in transplanted pearl oyster. PI was upregulated during pearl sac development stages. GP and LC-PUFA levels were upregulated during pearl formation stage. In order to identify enriched metabolic pathways, pathway enrichment analysis was conducted. Five metabolic pathways were found significantly enriched, namely glycosylphosphatidylinositol-anchor biosynthesis, glycerophospholipid metabolism, alpha-linolenic acid metabolism, linoleic acid metabolism and arachidonic acid metabolism. Herein, results suggested that the lipids involved in immune response, pearl sac maturation, and pearl formation in the host pearl oyster after transplantation, which might lead to an improvement in the survival rate and pearl quality of transplanted pearl oyster.
Collapse
Affiliation(s)
- Hailing Wu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Chuangye Yang,
| | - Ruijuan Hao
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yongshan Liao
- Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang, China
- Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang, China
- Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang, China
- Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
5
|
Reinwald H, Alvincz J, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Toxicogenomic profiling after sublethal exposure to nerve- and muscle-targeting insecticides reveals cardiac and neuronal developmental effects in zebrafish embryos. CHEMOSPHERE 2022; 291:132746. [PMID: 34748799 DOI: 10.1016/j.chemosphere.2021.132746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
For specific primary modes of action (MoA) in environmental non-target organisms, EU legislation restricts the usage of active substances of pesticides or biocides. Corresponding regulatory hazard assessments are costly, time consuming and require large numbers of non-human animal studies. Currently, predictive toxicology of development compounds relies on their chemical structure and provides little insights into toxicity mechanisms that precede adverse effects. Using the zebrafish embryo model, we characterized transcriptomic responses to a range of sublethal concentrations of six nerve- and muscle-targeting insecticides with different MoA (abamectin, carbaryl, chlorpyrifos, fipronil, imidacloprid & methoxychlor). Our aim was to identify affected biological processes and suitable biomarker candidates for MoA-specific signatures. Abamectin showed the most divergent signature among the tested insecticides, linked to lipid metabolic processes. Differentially expressed genes (DEGs) after imidacloprid exposure were primarily associated with immune system and inflammation. In total, 222 early responsive genes to either MoA were identified, many related to three major processes: (1) cardiac muscle cell development and functioning (tcap, desma, bag3, hspb1, hspb8, flnca, myoz3a, mybpc2b, actc2, tnnt2c), (2) oxygen transport and hypoxic stress (alas2, hbbe1.1, hbbe1.3, hbbe2, hbae3, igfbp1a, hif1al) and (3) neuronal development and plasticity (npas4a, egr1, btg2, ier2a, vgf). The thyroidal function related gene dio3b was upregulated by chlorpyrifos and downregulated by higher abamectin concentrations. Important regulatory genes for cardiac muscle (tcap) and forebrain development (npas4a) were the most frequently ifferentially expressed across all insecticide treatments. We consider the identified gene sets as useful early warning biomarker candidates, i.e. for developmental toxicity targeting heart and brain in aquatic vertebrates. Our findings provide a better understanding about early molecular events in response to the analyzed MoA. Perceptively, this promotes the development for sensitive and informative biomarker-based in vitro assays for toxicological MoA prediction and AOP refinement, without the suffering of adult fish.
Collapse
Affiliation(s)
- Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julia Alvincz
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
6
|
Lu J, Zhang M, Liang H, Shen C, Zhang B, Liang B. Comparative proteomics and transcriptomics illustrate the allograft-induced stress response in the pearl oyster (Pinctada fucata martensii). FISH & SHELLFISH IMMUNOLOGY 2022; 121:74-85. [PMID: 34990804 DOI: 10.1016/j.fsi.2021.12.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Implantation of a spherical nucleus into a recipient oyster is a critical step in artificial pearl production. However, the molecular mechanisms underlying the response of the pearl oyster to this operation are poorly understood. In this research, we used transcriptomic and proteomic analyses to examine allograft-induced changes in gene/protein expression patterns in Pinctada fucata martensii 12 h after nucleus implantation. Transcriptome analysis identified 688 differential expression genes (DEGs) (FDR<0.01 and |fold change) > 2). Using a 1.2-fold increase or decrease in protein expression as a benchmark for differentially expressed proteins (DEPs), 108 DEPs were reliably quantified, including 71 up-regulated proteins (DUPs) and 37 down-regulated proteins (DDPs). Further analysis revealed that the GO terms, including "cellular process", "biological regulation" and "metabolic process" were considerably enriched. In addition, the transcriptomics analysis showed that "Neuroactive ligand-receptor interaction", "NF-kappa B signaling pathway", "MAPK signaling pathway", "PI3K-Akt signaling pathway', "Toll-like receptor signaling pathway", and "Notch signaling pathway" were significantly enriched in DEGs. The proteomics analysis showed that "ECM-receptor interaction", "Human papillomavirus infection", and "PI3K-Akt signaling pathway" were significantly enriched in DEPs. The results indicate that these functions could play an important role in response to pear oyster stress at nucleus implantation. To assess the potential relevance of quantitative information between mRNA and proteins, using Ward's hierarchical clustering analysis clustered the protein/gene expression patterns across the experimental and control samples into six groups. To investigate the biological processes associated with the protein in each cluster, we identified the significantly enriched GO terms and KEGG pathways in the proteins in each cluster. Gene set enrichment analysis (GSEA) was used to reveal the potential protein or transcription pathways associated with the response to nuclear implantation. Thus, the study of P. f. martensii is essential to enhance our understanding of the molecular mechanisms involved in pearl biosynthesis and the biology of bivalve molluscs.
Collapse
Affiliation(s)
- Jinzhao Lu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Meizhen Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, 524088, China.
| | - Chenghao Shen
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bidan Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
7
|
Li Z, Bao X, Liu X, Li Y, Cui M, Liu X, Li B, Feng Y, Xu X, Sun G, Wang W, Yang J. Transcriptome profiling based on protein-protein interaction networks provides a set of core genes for understanding the immune response mechanisms of the egg-protecting behavior in Octopus ocellatus. FISH & SHELLFISH IMMUNOLOGY 2021; 117:113-123. [PMID: 34333127 DOI: 10.1016/j.fsi.2021.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Protection via of the immune system is indispensable to the life of organisms. Within an immune network, problems with a given link will affect the normal life activities of the organism. Octopus ocellatus is cephalopod widely distributed throughout the world's oceans. Because of its unique nervous system and locomotive organs, research on this species has gradually increased in recent years. Many immune response mechanisms associated with behaviors of O. ocellatus are still unclear. Moreover, as a factor affecting the normal growth of O. ocellatus, egg protection has rarely been considered in previous behavioral studies. In this study, we analyzed the transcriptome profile of gene expression in O. ocellatus larvae, and identified 5936 differentially expressed genes (DEGs). GO and KEGG enrichment analyses were used to search for immune-related DEGs. Protein-protein interaction networks were constructed to examine the interactions between immune-related genes. Fifteen hub genes involved in multiple KEGG signaling pathways or with multiple protein-protein interaction relationships were obtained and verified by quantitative RT-PCR. We first studied the effects of egg protection on the immunity of O. ocellatus larvae by means of protein-protein interaction networks, and the results provide valuable genetic resources for understanding the immunity of invertebrate larvae. The data serve as a foundation for further research on the egg-protecting behavior of invertebrates.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xintian Liu
- Weihai Oceanic Development Research Institute, Weihai, 264200, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Mingxian Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, 264025, China; Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, 264004, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China; Jiangsu Baoyuan Biotechnology Co. Ltd., Lianyungang, 222100, China.
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|