1
|
Widanarni W, Gustilatov M, Ekasari J, Julyantoro PGS, Waturangi DE, Sukenda S. Unveiling the positive impact of biofloc culture on Vibrio parahaemolyticus infection of Pacific white shrimp by reducing quorum sensing and virulence gene expression and enhancing immunity. JOURNAL OF FISH DISEASES 2024; 47:e13932. [PMID: 38373053 DOI: 10.1111/jfd.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
This study aimed to evaluate and unveil the positive impact of biofloc culture on Vibrio parahaemolyticus infection of Pacific white shrimp by reducing quorum sensing (QS) and virulence gene expression and enhancing shrimp's immunity. The shrimp with an average body weight of 0.50 ± 0.09 g were reared in containers with a volume of 2.5 L, 21 units, and a density of 20 shrimp L-1. The shrimp were cultured for 5 days, with each treatment including biofloc system maintenance with a C/N ratio of 10 and a control treatment without biofloc, followed by a challenge test through immersion using V. parahaemolyticus at densities of 103, 105, and 107 CFU mL-1 initially. The results of the in vitro experiment showed that biofloc suspension can inhibit and disperse biofilm formation, as well as reduce the exo-enzyme activity (amylase, protease, and chitinase) of V. parahaemolyticus. Furthermore, the biofloc treatment significantly reduced the expression of the QS regulatory gene OpaR, the PirB toxin gene, and the virulence factor genes T6SS1 and T6SS2 in both in vitro and in vivo. The biofloc system also increased the expression of shrimp immunity-related genes (LGBP, proPO, SP, and PE) and the survival rate of white shrimp challenged with V. parahaemolyticus.
Collapse
Affiliation(s)
- Widanarni Widanarni
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Muhamad Gustilatov
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Julie Ekasari
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, Indonesia
| | | | - Sukenda Sukenda
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| |
Collapse
|
2
|
Wang HC, Lin SJ, Wang HC, Kumar R, Le PT, Leu JH. A bacterial binary toxin system that kills both insects and aquatic crustaceans: Photorhabdus insect-related toxins A and B. PLoS Pathog 2023; 19:e1011330. [PMID: 37141203 PMCID: PMC10159206 DOI: 10.1371/journal.ppat.1011330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Photorhabdus insect-related toxins A and B (PirA and PirB) were first recognized as insecticidal toxins from Photorhabdus luminescens. However, subsequent studies showed that their homologs from Vibrio parahaemolyticus also play critical roles in the pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimps. Based on the structural features of the PirA/PirB toxins, it was suggested that they might function in the same way as a Bacillus thuringiensis Cry pore-forming toxin. However, unlike Cry toxins, studies on the PirA/PirB toxins are still scarce, and their cytotoxic mechanism remains to be clarified. In this review, based on our studies of V. parahaemolyticus PirAvp/PirBvp, we summarize the current understanding of the gene locations, expression control, activation, and cytotoxic mechanism of this type of toxin. Given the important role these toxins play in aquatic disease and their potential use in pest control applications, we also suggest further topics for research. We hope the information presented here will be helpful for future PirA/PirB studies.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, Republic of China
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, Republic of China
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Shin-Jen Lin
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Han-Ching Wang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, Republic of China
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ramya Kumar
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, Republic of China
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Phuoc Thien Le
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| |
Collapse
|
3
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
4
|
Gu X, Liu M, Wang B, Jiang K, Wang L. Identification and Expression Analysis of an Interacting Protein (LvFABP) that Mediates Vibrio parahaemolyticus AHPND Toxin Action. Front Immunol 2022; 13:940405. [PMID: 35860240 PMCID: PMC9289683 DOI: 10.3389/fimmu.2022.940405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus causing AHPND (VPAHPND) is the most serious disease affecting shrimp farming. The PirAvp and PirBvp toxins of VPAHPND are known virulence factors. However, the corresponding target protein in shrimp that mediates their action has not been identified. By screening yeast two-hybrid cDNA libraries from intestine, stomach, and hepatopancreas of Litopenaeus vannamei, the protein with the largest increase in gene expression in shrimp hepatopancreas in response to VPAHPND challenge was identified and designated LvFABP. Analysis revealed high sequence homology of the LvFABP gene and a lipocalin/cytosolic fatty acid binding gene. Yeast two-hybrid pairwise analysis, GST-pull down assay, and far-western blot assay were performed to determine the interaction between LvFABP and PirBvp. LvFABP was able to directly bind to PirBvp. The expression of LvFABP in the hepatopancreas was significantly higher at P23 and P27 developmental stages of L. vannamei. RNA interference (RNAi) of LvFABP reduced the mortality, histopathological signs of AHPND in the hepatopancreas, and the number of virulent VPAHPND bacteria in the intestine, stomach, and hepatopancreas after VPAHPND challenge. We concluded that the LvFABP was involved in AHPND pathogenesis and acted as a VPAHPND toxin interacting protein. This is the first identification of VPAHPND toxin interacting protein from the shrimp digestive system by yeast two-hybrid library screening and were confirmed by in vitro protein interaction verification and in vivo challenge experiments. This study provides novel insight into the contributions of LvFABP towards AHPND pathogenesis in shrimp. The findings could inform AHPND preventative measures in shrimp farming.
Collapse
Affiliation(s)
- Xiaoqian Gu
- Chinese Academy Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Liu
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Baojie Wang
- Chinese Academy Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Keyong Jiang
- Chinese Academy Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lei Wang
- Chinese Academy Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lei Wang,
| |
Collapse
|
5
|
Soto-Rodriguez SA, Lozano-Olvera R, Ramos-Clamont Montfort G, Zenteno E, Sánchez-Salgado JL, Vibanco-Pérez N, Aguilar Rendón KG. New Insights into the Mechanism of Action of PirAB from Vibrio Parahaemolyticus. Toxins (Basel) 2022; 14:toxins14040243. [PMID: 35448852 PMCID: PMC9030326 DOI: 10.3390/toxins14040243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
PirAB toxins secreted by Vibrio parahaemolyticus (Vp) harbor the pVA1 virulence plasmid, which causes acute hepatopancreatic necrosis disease (AHPND), an emerging disease in Penaeid shrimp that can cause 70–100% mortality and that has resulted in great economic losses since its first appearance. The cytotoxic effect of PirABVp on the epithelial cells of the shrimp hepatopancreas (Hp) has been extensively documented. New insights into the biological role of the PirBVp subunit show that it has lectin-like activity and recognizes mucin-like O-glycosidic structures in the shrimp Hp. The search for toxin receptors can lead to a better understanding of the infection mechanisms of the pathogen and the prevention of the host disease by blocking toxin–receptor interactions using a mimetic antagonist. There is also evidence that Vp AHPND changes the community structure of the microbiota in the surrounding water, resulting in a significant reduction of several bacterial taxa, especially Neptuniibacter spp. Considering these findings, the PirABvp toxin could exhibit a dual role of damaging the shrimp Hp while killing the surrounding bacteria.
Collapse
Affiliation(s)
- Sonia A. Soto-Rodriguez
- Laboratorio de Bacteriología, Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad de Acuacultura y Manejo Ambiental, Av. Sábalo-Cerritos S/N A.P. 711, Mazatlán 82112, Sinaloa, Mexico; (R.L.-O.); (K.G.A.R.)
- Correspondence:
| | - Rodolfo Lozano-Olvera
- Laboratorio de Bacteriología, Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad de Acuacultura y Manejo Ambiental, Av. Sábalo-Cerritos S/N A.P. 711, Mazatlán 82112, Sinaloa, Mexico; (R.L.-O.); (K.G.A.R.)
| | - Gabriela Ramos-Clamont Montfort
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico;
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, Mexico City 04510, Mexico, Mexico; (E.Z.); (J.L.S.-S.)
| | - José Luis Sánchez-Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, Mexico City 04510, Mexico, Mexico; (E.Z.); (J.L.S.-S.)
| | - Norberto Vibanco-Pérez
- Laboratorio de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura, Tepic 63190, Nayarit, Mexico;
| | - Karla G. Aguilar Rendón
- Laboratorio de Bacteriología, Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad de Acuacultura y Manejo Ambiental, Av. Sábalo-Cerritos S/N A.P. 711, Mazatlán 82112, Sinaloa, Mexico; (R.L.-O.); (K.G.A.R.)
| |
Collapse
|