1
|
Hwang SJ, Lee HJ. Identification of differentially expressed genes in mouse embryonic stem cell under hypoxia. Genes Genomics 2020; 43:313-321. [PMID: 33094376 DOI: 10.1007/s13258-020-01009-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Under hypoxia, mouse embryonic stem cells (mESCs) lose the ability to self-renew and begin to differentiate through down-regulation of LIFR-STAT3 pathway via hypoxia-inducible factor-1α (HIF-1α). However, it remains largely unknown what kinds of factors are involved in hypoxia-induced differentiation of mESCs. PURPOSE This study aims to identify the differentially expressed genes (DEGs) in early differentiation of mESCs under hypoxia. METHODS Here we utilized a Genefishing techniqueTM to discover the new DEGs during hypoxia-induced early differentiation in CCE mESCs. Next, we investigated the role of DEGs using morphological observation, alkaline phosphatase (ALP) assay, STAT3 activation analysis, and biomarkers analysis for stemness. RESULTS We detected 19 DEGs under hypoxia and performed cloning with sequencing in six genes. We confirmed the expression patterns of five DEGs including H2afz and GOT1 by realtime PCR assay. Among them, H2afz was significantly decreased under hypoxia, depending on HIF-1α. H2afz-overexpressing CCE mESCs maintained their ALP activity and stem cell markers (Nanog and Rex1), even in hypoxic condition. On the other hand, the early differentiation markers such as FGF5 and STAT5a, which had been increased in hypoxic conditions, were reduced by H2afz overexpression. CONCLUSION We discovered that H2afz could be a new target gene that functions in hypoxia-induced differentiation in mESCs and have revealed that it is involved in maintaining the pluripotency of mESCs in the early stages of differentiation. These findings will provide insights into mechanisms of hypoxia-mediated differentiation of mESCs during early development.
Collapse
Affiliation(s)
- Su Jung Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyungnam, 50834, South Korea.,School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Hyo-Jong Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyungnam, 50834, South Korea. .,School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.
| |
Collapse
|
2
|
Land SC, Scott CL, Walker D. mTOR signalling, embryogenesis and the control of lung development. Semin Cell Dev Biol 2014; 36:68-78. [PMID: 25289569 DOI: 10.1016/j.semcdb.2014.09.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/07/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Abstract
The existence of a nutrient sensitive "autocatakinetic" regulator of embryonic tissue growth has been hypothesised since the early 20th century, beginning with pioneering work on the determinants of foetal size by the Australian physiologist, Thorburn Brailsford-Robertson. We now know that the mammalian target of rapamycin complexes (mTORC1 and 2) perform this essential function in all eukaryotic tissues by balancing nutrient and energy supply during the first stages of embryonic cleavage, the formation of embryonic stem cell layers and niches, the highly specified programmes of tissue growth during organogenesis and, at birth, paving the way for the first few breaths of life. This review provides a synopsis of the role of the mTOR complexes in each of these events, culminating in an analysis of lung branching morphogenesis as a way of demonstrating the central role mTOR in defining organ structural complexity. We conclude that the mTOR complexes satisfy the key requirements of a nutrient sensitive growth controller and can therefore be considered as Brailsford-Robertson's autocatakinetic centre that drives tissue growth programmes during foetal development.
Collapse
Affiliation(s)
- Stephen C Land
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | - Claire L Scott
- Prostrakan Pharmaceuticals, Galabank Business Park, Galashiels TD1 1PR, UK
| | - David Walker
- School of Psychology & Neuroscience, Westburn Lane, St Andrews KY16 9JP, UK
| |
Collapse
|
3
|
Kiss T, Battonyai I, Pirger Z. Down regulation of sodium channels in the central nervous system of hibernating snails. Physiol Behav 2014; 131:93-8. [DOI: 10.1016/j.physbeh.2014.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/26/2014] [Accepted: 04/14/2014] [Indexed: 12/20/2022]
|
4
|
O'Reilly VC, Lopes Floro K, Shi H, Chapman BE, Preis JI, James AC, Chapman G, Harvey RP, Johnson RS, Grieve SM, Sparrow DB, Dunwoodie SL. Gene-environment interaction demonstrates the vulnerability of the embryonic heart. Dev Biol 2014; 391:99-110. [PMID: 24657234 DOI: 10.1016/j.ydbio.2014.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/21/2014] [Accepted: 03/07/2014] [Indexed: 01/15/2023]
Abstract
Mammalian embryos develop in a low oxygen environment. The transcription factor hypoxia inducible factor 1a (HIF1α) is a key element in the cellular response to hypoxia. Complete deletion of Hif1α from the mouse conceptus causes extensive placental, vascular and heart defects, resulting in embryonic lethality. However the precise role of Hif1α in each of these organ systems remains unknown. To further investigate, we conditionally-deleted Hif1α from mesoderm, vasculature and heart individually. Surprisingly, deletion from these tissues did not recapitulate the same severe heart phenotype or embryonic lethality. Placental insufficiency, such as occurs in the complete Hif1α null, results in elevated cellular hypoxia in mouse embryos. We hypothesized that subjecting the Hif1α conditional null embryos to increased hypoxic stress might exacerbate the effects of tissue-specific Hif1α deletion. We tested this hypothesis using a model system mimicking placental insufficiency. We found that the majority of embryos lacking Hif1α in the heart died when exposed to non-physiological hypoxia. This was a heart-specific phenomenon, as HIF1α protein accumulated predominantly in the myocardium of hypoxia-stressed embryos. Our study demonstrates the vulnerability of the heart to lowered oxygen levels, and that under such conditions of non-physiological hypoxia the embryo absolutely requires Hif1α to continue normal development. Importantly, these findings extend our understanding of the roles of Hif1α in cardiovascular development.
Collapse
Affiliation(s)
- Victoria C O'Reilly
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Kylie Lopes Floro
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Hongjun Shi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Bogdan E Chapman
- School of Molecular Bioscience, Molecular Bioscience Building G08, University of Sydney, NSW 2006, Australia.
| | - Jost I Preis
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Alexander C James
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Gavin Chapman
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Molecular Bioscience, Molecular Bioscience Building G08, University of Sydney, NSW 2006, Australia.
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent׳s Clinical School, Faculty of Medicine, University of New South Wales, de Lacy Building, St. Vincent׳s Hospital, Darlinghurst, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Randall S Johnson
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3 EG, United Kingdom.
| | - Stuart M Grieve
- School of Molecular Bioscience, Molecular Bioscience Building G08, University of Sydney, NSW 2006, Australia; Department of Radiology, Royal Prince Alfred Hospital, Missenden Road, Camperdown, Sydney, NSW 2050, Australia; Sydney Translational Imaging Laboratory, Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW 2006, Australia.
| | - Duncan B Sparrow
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent׳s Clinical School, Faculty of Medicine, University of New South Wales, de Lacy Building, St. Vincent׳s Hospital, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Sally L Dunwoodie
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent׳s Clinical School, Faculty of Medicine, University of New South Wales, de Lacy Building, St. Vincent׳s Hospital, Darlinghurst, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Lee HJ, Kim KW. Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro. Biomol Ther (Seoul) 2013; 20:280-5. [PMID: 24130924 PMCID: PMC3794524 DOI: 10.4062/biomolther.2012.20.3.280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/27/2012] [Accepted: 04/10/2012] [Indexed: 11/25/2022] Open
Abstract
The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-1α (HIF-1α). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-1α in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDA-CIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-1α protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-1α protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-1α.
Collapse
Affiliation(s)
- Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae 621-749
| | | |
Collapse
|
6
|
Egg M, Köblitz L, Hirayama J, Schwerte T, Folterbauer C, Kurz A, Fiechtner B, Möst M, Salvenmoser W, Sassone-Corsi P, Pelster B. Linking oxygen to time: the bidirectional interaction between the hypoxic signaling pathway and the circadian clock. Chronobiol Int 2013; 30:510-29. [PMID: 23421720 DOI: 10.3109/07420528.2012.754447] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The circadian clock and the hypoxic signaling pathway play critical roles in physiological homeostasis as well as in tumorgenesis. Interactions between both pathways have repeatedly been reported for mammals during the last decade, the molecular basis, though, has not been identified so far. Expression levels of oxygen-regulated and circadian clock genes in zebrafish larvae (Danio rerio) and zebrafish cell lines were significantly altered under hypoxic conditions. Thus, long-term hypoxic incubation of larvae resulted in a dampening of the diurnal oscillation amplitude of the period1 gene expression starting only several hours after start of the hypoxic incubation. A significant decrease in the amplitude of the period1 circadian oscillation in response to hypoxia and in response to the hypoxic mimic CoCl2 was also observed using a zebrafish luciferase reporter cell line in constant darkness. In addition, activity measurements of zebrafish larvae using an infrared-sensitive camera demonstrated the loss of their usual circadian activity pattern under hypoxic conditions. To explore the functional basis of the observed cross-talk between both signaling pathways ChIP assays were performed. Increasing with the duration of hypoxia, a nearly 4-fold occupancy of hypoxia-inducible factor 1 (Hif-1α) at two specific E-box binding sites located in the period1 gene control region was shown, demonstrating therewith the transcriptional co-regulation of the core clock gene by the major transcription factor of the hypoxic pathway. On the other hand, circadian transgenic zebrafish cells, simulating a repressed or an overstimulated circadian clock, modified gene transcription levels of oxygen-regulated genes such as erythropoietin and vascular endothelial growth factor 165 and altered the hypoxia-induced increase in Hif-1α protein concentration. In addition, the amount of Hif-1α protein accumulated during the hypoxic response was shown to depend on the time of the day, with one maximum during the light phase and a second one during the dark phase. The direct binding of Hif-1α to the period1 gene control region provides a mechanistic explanation for the repeatedly observed interaction between hypoxia and the circadian clock. The cross-talk between both major signaling pathways was shown for the first time to be bidirectional and may provide the advantage of orchestrating a broad range of genes and metabolic pathways to cope with altered oxygen availabilities.
Collapse
Affiliation(s)
- Margit Egg
- Institut für Zoologie, Universität Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee HJ, Jeong CH, Cha JH, Kim KW. PKC-delta inhibitors sustain self-renewal of mouse embryonic stem cells under hypoxia in vitro. Exp Mol Med 2010; 42:294-301. [PMID: 20177147 DOI: 10.3858/emm.2010.42.4.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Under hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-1 alpha (HIF-1 alpha). Previous studies have demonstrated that PKC-delta is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-1 alpha in human cancer cells. Furthermore, activation of PKC-delta mediates cardiac differentiation of ESCs and hematopoietic stem cells. However, the role of PKC-delta in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we show the inhibition of PKC-delta activity prevents the early differentiation of mESCs under hypoxia using PKC-delta inhibitors, GF 109203X and rottlerin. Reduction of PKC-delta activity under hypoxia effectively decreased HIF-1 alpha protein levels and substantially recovered the expression of LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. Furthermore, PKC-delta inhibitors aid to sustain the expression of self-renewal markers and suppress the expression of early differentiation markers in mESCs under hypoxia. Taken together, these results suggest that PKC-delta inhibitors block the early differentiation of mESCs via destabilization of HIF-1 alpha under hypoxia.
Collapse
Affiliation(s)
- Hyo-Jong Lee
- Research Institute of Pharmaceutical Sciences, NeuroVascular Coordination Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
8
|
The effects of low oxygen on self-renewal and differentiation of embryonic stem cells. Curr Opin Organ Transplant 2009; 14:694-700. [DOI: 10.1097/mot.0b013e3283329d53] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Powers DE, Millman JR, Huang RB, Colton CK. Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics. Biotechnol Bioeng 2008; 101:241-54. [PMID: 18727033 DOI: 10.1002/bit.21986] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most embryonic stem (ES) cell research is performed with a gas phase oxygen partial pressure (pO(2)) of 142 mmHg, whereas embryonic cells in early development are exposed to pO(2) values of 0-30 mmHg. To understand effects of these differences, we studied murine ES (mES) growth, maintenance of stem cell phenotype, and cell energetics over a pO(2) range of 0-285 mmHg, in the presence or absence of differentiation-suppressing leukemia inhibitory factor (LIF). With LIF, growth rate was sensitive to pO(2) but constant with time, and expression of self-renewal transcription factors decreased at extremes of pO(2). Subtle morphological changes suggested some early differentiation, but cells retained the ability to differentiate into derivatives of all three germ layers at low pO(2). Without LIF, growth rate decreased with time, and self-renewal transcription factor mRNA decreased further. Gross morphological changes occurred, and overt differentiation occurred at all pO(2). These findings suggested that hypoxia in the presence of LIF promoted limited early differentiation. ES cells survived oxygen starvation with negligible cell death by increasing anaerobic metabolism within 48 h of anoxic exposure. Decreasing pO(2) to 36 mmHg or lower decreased oxygen consumption rate and increased lactate production rate. The fraction of ATP generated aerobically was 60% at or above 142 mmHg and decreased to 0% under anoxia, but the total ATP production rate remained nearly constant at all pO(2). In conclusion, undifferentiated ES cells adapt their energy metabolism to proliferate at all pO(2) between 0 and 285 mmHg. Oxygen has minimal effects on undifferentiated cell growth and phenotype, but may exert more substantial effects under differentiating conditions.
Collapse
Affiliation(s)
- Daryl E Powers
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 66-452, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
10
|
Bourdeau-Heller J, Oberley TD. Prostate carcinoma cells selected by long-term exposure to reduced oxygen tension show remarkable biochemical plasticity via modulation of superoxide, HIF-1alpha levels, and energy metabolism. J Cell Physiol 2007; 212:744-52. [PMID: 17458899 DOI: 10.1002/jcp.21069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cancer cells are able to tolerate levels of O(2) that are damaging or lethal to normal cells; we hypothesize that this tolerance is the result of biochemical plasticity which maintains cellular homeostasis of both energy levels and oxidation state. In order to examine this hypothesis, we used different O(2) levels as a selective agent during long-term culture of DU145 prostate cancer cells to develop three isogenic cell lines that grow in normoxic (4%), hyperoxic (21%), or hypoxic (1%) O(2) conditions. Growth characteristics and O(2) consumption differed significantly between these cell lines without changes in ATP levels or altered sensitivity to 2-deoxy-D-glucose, an inhibitor of glycolysis. O(2) consumption was significantly higher in the hyperoxic line as was the level of endogenous superoxide. The hypoxic cell line regulated the chemical gradient of the proton motive force (PMF) independent of the electrical component without O(2)-dependent changes in Hif-1alpha levels. In contrast, the normoxic line regulated Hif-1alpha without tight regulation of the chemical component of the PMF noted in the hypoxic cell line. From these studies, we conclude that selection of prostate cancer cells by long-term exposure to low ambient levels of O(2) resulted in cells with unique biochemical properties in which energy metabolism, reactive oxygen species (ROS), and HIF-1alpha levels are modulated to allow cell survival and growth. Thus, cancer cells exhibit remarkable biochemical plasticity in response to various O(2) levels.
Collapse
Affiliation(s)
- Jeanne Bourdeau-Heller
- University of Wisconsin School of Medicine and Public Health, Department of Pathology, Madison, WI 53705, USA
| | | |
Collapse
|
11
|
Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci U S A 2006; 103:5478-83. [PMID: 16567644 PMCID: PMC1414632 DOI: 10.1073/pnas.0508035103] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Indexed: 02/08/2023] Open
Abstract
The placenta is the principal metabolic, respiratory, excretory, and endocrine organ for the first 9 months of fetal life. Its role in fetal and maternal physiology is remarkably diverse. Because of the central role that the placenta has in fetal and maternal physiology and development, the possibility that variation in placental gene expression patterns might be linked to important abnormalities in maternal or fetal health, or even variations in later life, warrants investigation. As an initial step, we used DNA microarrays to analyze gene expression patterns in 72 samples of amnion, chorion, umbilical cord, and sections of villus parenchyma from 19 human placentas from successful full-term pregnancies. The umbilical cord, chorion, amnion, and villus parenchyma samples were readily distinguished by differences in their global gene-expression patterns, many of which seemed to be related to physiology and histology. Differentially expressed genes have roles that include placental trophoblast secretion, signal transduction, metabolism, immune regulation, cell adhesion, and structure. We found interindividual differences in expression patterns in villus parenchyma and systematic differences between the maternal, fetal, and intermediate layers. A group of genes that was expressed in both the maternal and fetal villus parenchyma sections of placenta included genes that may be associated with preeclampsia. We identified sets of genes whose expression in placenta was significantly correlated with the sex of the fetus. This study provides a rich and diverse picture of the molecular variation in the placenta from healthy pregnancies.
Collapse
|