1
|
Guarneri AA, Lorenzo MG. Triatomine physiology in the context of trypanosome infection. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:66-76. [PMID: 27401496 DOI: 10.1016/j.jinsphys.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Triatomines are hematophagous insects that feed on the blood of vertebrates from different taxa, but can occasionally also take fluids from invertebrate hosts, including other insects. During the blood ingestion process, these insects can acquire diverse parasites that can later be transmitted to susceptible vertebrates if they complete their development inside bugs. Trypanosoma cruzi, the etiological agent of Chagas disease, and Trypanosoma rangeli are protozoan parasites transmitted by triatomines, the latter only transmitted by Rhodnius spp. The present work makes an extensive revision of studies evaluating triatomine-trypanosome interaction, with special focus on Rhodnius prolixus interacting with the two parasites. The sequences of events encompassing the development of these trypanosomes inside bugs and the consequent responses of insects to this infection, as well as many pathological effects produced by the parasites are discussed.
Collapse
Affiliation(s)
- Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil.
| | - Marcelo Gustavo Lorenzo
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Biner O, Trachsel C, Moser A, Kopp L, Langenegger N, Kämpfer U, von Ballmoos C, Nentwig W, Schürch S, Schaller J, Kuhn-Nentwig L. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei. PLoS One 2015; 10:e0143963. [PMID: 26630650 PMCID: PMC4667920 DOI: 10.1371/journal.pone.0143963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022] Open
Abstract
Structure of Cupiennius salei venom hyaluronidase Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40–60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. Function of venom hyaluronidases Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well the current phylogenetic idea on a more isolated position of these families and can perhaps be explained by specialized prey catching techniques.
Collapse
Affiliation(s)
- Olivier Biner
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Aline Moser
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Lukas Kopp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Nicolas Langenegger
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Urs Kämpfer
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | - Wolfgang Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Johann Schaller
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
3
|
Souza-Ferreira PS, Moreira MF, Atella GC, Oliveira-Carvalho AL, Eizemberg R, Majerowicz D, Melo ACA, Zingali RB, Masuda H. Molecular characterization of Rhodnius prolixus' embryonic cuticle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:89-100. [PMID: 24418313 DOI: 10.1016/j.ibmb.2013.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/05/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
The embryonic cuticle (EC) of Rhodnius prolixus envelopes the entire body of the embryo during hatching and provides physical protection, allowing the embryo to pass through a narrow chorionic border. Most of the knowledge about the EC of insects is derived from studies on ultrastructure and secretion processes during embryonic development, and little is known about the molecular composition of this structure. We performed a comprehensive molecular characterization of the major components extracted from the EC of R. prolixus, and we discuss the role of the different molecules that were identified during the eclosion process. The results showed that, similar to the post-embryonic cuticles of insects, the EC of R. prolixus is primarily composed of carbohydrates (57%), lipids (19%), and proteins (8%). Considering only the carbohydrates, chitin is by far the major component (approximately 70%), and it is found primarily along the body of the EC. It is scarce or absent in its prolongations, which are composed of glycosaminoglycans. In addition to chitin, we also identified amino (15%), neutral (12%) and acidic (3%) carbohydrates in the EC of R. prolixus. In addition carbohydrates, we also identified neutral lipids (64.12%) and phospholipids (35.88%). Proteomic analysis detected 68 proteins (55 were identified and 13 are hypothetical proteins) using the sequences in the R. prolixus genome (http://www.vectorbase.org). Among these proteins, 8 out of 15 are associated with cuticle metabolism. These proteins are unequivocally cuticle proteins, and they have been described in other insects. Approximately 35% of the total proteins identified were classified as having a structural function. Chitin-binding protein, amino peptidase, amino acid oxidase, oxidoreductase, catalase and peroxidase are all proteins associated with cuticle metabolism. Proteins known to be cuticle constituents may be related to the function of the EC in assisting the insect during eclosion. To our knowledge, this is the first study to describe the global molecular composition of an EC in insects.
Collapse
Affiliation(s)
- Paula S Souza-Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Mônica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, 21941-902 Rio de Janeiro, Brazil
| | - Geórgia C Atella
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, 21941-902 Rio de Janeiro, Brazil
| | - Ana Lúcia Oliveira-Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Roberto Eizemberg
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, 21941-599 Rio de Janeiro, RJ, Brazil
| | - David Majerowicz
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, 21941-902 Rio de Janeiro, Brazil
| | - Russolina B Zingali
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Hatisaburo Masuda
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Trypanosoma cruzi heparin-binding proteins mediate the adherence of epimastigotes to the midgut epithelial cells of Rhodnius prolixus. Parasitology 2012; 139:735-43. [PMID: 22310218 DOI: 10.1017/s0031182011002344] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heparin-binding proteins (HBPs) have been demonstrated in both infective forms of Trypanosoma cruzi and are involved in the recognition and invasion of mammalian cells. In this study, we evaluated the potential biological function of these proteins during the parasite-vector interaction. HBPs, with molecular masses of 65·8 kDa and 59 kDa, were isolated from epimastigotes by heparin affinity chromatography and identified by biotin-conjugated sulfated glycosaminoglycans (GAGs). Surface plasmon resonance biosensor analysis demonstrated stable receptor-ligand binding based on the association and dissociation values. Pre-incubation of epimastigotes with GAGs led to an inhibition of parasite binding to immobilized heparin. Competition assays were performed to evaluate the role of the HBP-GAG interaction in the recognition and adhesion of epimastigotes to midgut epithelial cells of Rhodnius prolixus. Epithelial cells pre-incubated with HBPs yielded a 3·8-fold inhibition in the adhesion of epimastigotes. The pre-treatment of epimastigotes with heparin, heparan sulfate and chondroitin sulfate significantly inhibited parasite adhesion to midgut epithelial cells, which was confirmed by scanning electron microscopy. We provide evidence that heparin-binding proteins are found on the surface of T. cruzi epimastigotes and demonstrate their key role in the recognition of sulfated GAGs on the surface of midgut epithelial cells of the insect vector.
Collapse
|
5
|
Involvement of sulfated glycosaminoglycans on the development and attachment of Trypanosoma cruzi to the luminal midgut surface in the vector, Rhodnius prolixus. Parasitology 2011; 138:1870-7. [DOI: 10.1017/s0031182011001521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYIn the present study, we investigated the involvement of sulfated glycosaminoglycans in both the in vivo development and adhesion of T. cruzi epimastigotes to the luminal surface of the digestive tract of the insect vector, Rhodnius prolixus. Pre-incubation of T. cruzi, Dm 28c epimastigotes with heparin, chondroitin 4-sulfate, chondroitin 6-sulfate or protamine chloridrate inhibited in vitro attachment of parasites to the insect midgut. Enzymatic removal of heparan sulfate moieties by heparinase I or of chondroitin sulfate moieties by chondroitinase AC from the insect posterior midgut abolished epimastigote attachment in vitro. These treatments also reduced the labelling of anionic sites exposed at the luminal surface of the perimicrovillar membranes in the triatomine midgut epithelial cells. Inclusion of chondroitin 4-sulfate or chondroitin 6-sulfate and to a lesser extent, heparin, in the T. cruzi-infected bloodmeal inhibited the establishment of parasites in R. prolixus. These observations indicate that sulfated glycosaminoglycans are one of the determinants for both adhesion of the T. cruzi epimastigotes to the posterior midgut epithelial cells of the triatomine and the parasite infection in the insect vector, R. prolixus.
Collapse
|
6
|
Tetsukawa A, Nakamura J, Fujiwara S. Identification of chondroitin/dermatan sulfotransferases in the protochordate, Ciona intestinalis. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:205-12. [PMID: 20601060 DOI: 10.1016/j.cbpb.2010.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 11/22/2022]
Abstract
Sulfated glycosaminoglycans are important components of connective tissues. The pattern of sulfation is important for their biological functions. Ascidians, the closest relatives of vertebrates, have a simple chordate body plan. In the present study, we identified an almost complete set of genes encoding proteins homologous to chondroitin/dermatan sulfotransferases in the genome of the ascidian Ciona intestinalis. We found eight genes encoding 4-O-sulfotransferases, eight genes encoding 6-O-sulfotransferases, and three genes encoding uronyl 2-O-sulfotransferases. The number of sulfotransferase genes was unexpectedly large, considering that ascidians do not have a well-developed endoskeleton. In addition, most of the genes within each sub-family seemed to have arisen by gene duplication events that occurred in the ascidian lineage after divergence from the main chordate lineage. This suggests that a unique pattern of sulfation independently developed during ascidian evolution. Some of the genes identified in the present study showed tissue-specific expression in the epidermis, notochord, muscle, and central nervous system. Region-specific expression in the epidermis was also observed. The present study provides useful information for further comparative and functional analyses of sulfotransferases and proteoglycans in chordate embryos.
Collapse
Affiliation(s)
- Akira Tetsukawa
- Department of Applied Science, Faculty of Science, Kochi University, 2-5-1 Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | | | | |
Collapse
|
7
|
Is Rhodnius nasutus (Hemiptera; Reduviidae) changing its habitat as a consequence of human activity? Parasitol Res 2007; 102:797-800. [DOI: 10.1007/s00436-007-0823-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022]
|
8
|
dos Santos AVF, Onofre GR, Oliveira DMP, Machado EA, Allodi S, Silva LCF. Heparan sulfate is the main sulfated glycosaminoglycan species in internal organs of the male cockroach, Periplaneta americana. Micron 2006; 37:41-6. [PMID: 16169237 DOI: 10.1016/j.micron.2005.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
Sulfated glycosaminoglycans (GAGs) were isolated and characterized in thoracic muscle, fat body, whole digestive tract (stomach+intestine) and reproductive tract of adult male cockroaches, Periplaneta americana. Heparan sulfate (HS) was the predominant sulfated GAG species in the tissues analyzed, corresponding to more than 90% of the total sulfated GAG content. In both the thoracic muscle and fat body it was the only sulfated GAG species detected. We also determined the location of sulfated GAGs in most of these organs by histochemical analysis using 1,9-dimethylmethylene blue. In the thoracic muscle, sulfated GAG metachromatic staining was detected only in the connective tissue that surrounds the muscle bundles or fascicles. In the intestinal tract, metachromatic staining was observed in both epithelial and lining columnar cells. Only spermatozoa presented metachromatic material in the male reproductive tract. Since, HS corresponds to 90-100% of total sulfated GAGs in these tissues, the metachromatic staining specifically reflects the location of this particular sulfated GAG in these organs. In conclusion, the present study extends previous observations on the GAG composition in cockroaches providing new information on the tissue distribution and location of HS in several internal organs of adult males of the cockroach P. americana.
Collapse
Affiliation(s)
- Andre V F dos Santos
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Caixa Postal 68041, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|