1
|
Fimbres-Romero MDJ, Cabrera-Chávez F, Ezquerra-Brauer JM, Márquez-Ríos E, Suárez-Jiménez GM, Del Toro-Sanchez CL, Ramírez-Torres GI, Torres-Arreola W. Utilisation of collagenolytic enzymes from sierra fish ( Scomberomorus sierra) and jumbo squid ( Dosidicus gigas) viscera to generate bioactive collagen hydrolysates from jumbo squid muscle. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:2725-2733. [PMID: 34194108 PMCID: PMC8196179 DOI: 10.1007/s13197-020-04780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 10/22/2022]
Abstract
Crude extracts of collagenases from jumbo squid (Dosidicus gigas) hepatopancreas and sierra fish (Scomberomorus sierra) viscera were used to hydrolyse squid muscle collagen into peptides with inhibitory capacity over angiotensin I-converting enzyme (ACE) and ABTS free radicals [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)], as a measure of their antihypertensive potential and antioxidant activity, respectively. Proteins from 20 to 200 kDa were found in both enzyme extracts; however, in comparison to the jumbo squid extract (JSE), the extraction yield and specific activity of the enzymatic sierra fish extract (SFE) were ≈ 40% greater, suggesting the presence of enzymes with different collagenolytic activity. Moreover, the utilised collagen was obtained with a yield of 0.98 ± 0.09 g/100 g muscle from jumbo squid arms, which after an incubation with JSE and SFE generated peptides with different biological activity. However, the collagen hydrolysates from the enzymatic SFE contained a higher proportion of low-molecular-weight peptides than that obtained from JSE (15.2 and 7.9% of < 3 kDa peptides, respectively). Finally, the antioxidant potential and ACE-inhibitory activity were increased after hydrolysis, being the SFE the one that showed a greater increase of both biological activities (82.28% of ACE inhibition and 64% of ABTS inhibition).
Collapse
Affiliation(s)
- Manuel de J. Fimbres-Romero
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n. Apdo. Postal 1658, Col. Centro, 83000 Hermosillo, Sonora Mexico
| | - Francisco Cabrera-Chávez
- Nutrition Sciences Academic Unit, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80019 Mexico
| | - Josafat M. Ezquerra-Brauer
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n. Apdo. Postal 1658, Col. Centro, 83000 Hermosillo, Sonora Mexico
| | - Enrique Márquez-Ríos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n. Apdo. Postal 1658, Col. Centro, 83000 Hermosillo, Sonora Mexico
| | - Guadalupe M. Suárez-Jiménez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n. Apdo. Postal 1658, Col. Centro, 83000 Hermosillo, Sonora Mexico
| | - Carmen L. Del Toro-Sanchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n. Apdo. Postal 1658, Col. Centro, 83000 Hermosillo, Sonora Mexico
| | | | - Wilfrido Torres-Arreola
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n. Apdo. Postal 1658, Col. Centro, 83000 Hermosillo, Sonora Mexico
| |
Collapse
|
2
|
Hu B, Xiao J, Yi P, Hu C, Zhu M, Yin S, Wen C, Wu J. Cloning and characteristic of MMP1 gene from Hyriopsis cumingii and collagen hydrolytic activity of its recombinant protein. Gene 2019; 693:92-100. [PMID: 30716434 DOI: 10.1016/j.gene.2018.12.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/04/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
Matrix metalloproteinases (MMPs) play an essential role in a variety of biological processes including wound healing, inflammation, cell invasion, angiogenesis and immune defense. In this study, a putative MMP1 cDNA was cloned and characterized from Hyriopsis cumingii (designated as HcMMP1). The cDNA was 1822 bp in length and encoded a putative protein of 510 amino acids, with a predicted molecular mass of 58.28 kDa and an isoelectric point (pI) of 9.27. HcMMP1 contained all prototype MMPs family signatures, such as signal peptide, prodomain, catalytic center, hinge region, and hemopexin like domain. Quantitative real time-PCR (qRT-PCR) revealed that in mussels HcMMP1 mRNA was expressed in all tissues tested, and the transcriptional expression levels were significantly up-regulated in hepatopancreas and hemocytes after Aeromonas hydrophila, peptidoglycan stimulations and in mantle after wounding. Moreover, the recombination HcMMP1 protein, successfully expressed in Escherichia coli, was purified by affinity chromatography with the concentration of final yield at 0.3 mg/mL. The recombinase had an essentially hydrolytic activity toward rat type I collagen, mouse II and IV collagen after renaturation.
Collapse
Affiliation(s)
- Baoqing Hu
- College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Jun Xiao
- Jiangxi Fisheries Research Institute, Nanchang 330039, China
| | - Peipei Yi
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chenxi Hu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Mingxing Zhu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Shuyuan Yin
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Jielian Wu
- College of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
3
|
Purification and characterization of a new thermophilic collagenase from Nocardiopsis dassonvillei NRC2aza and its application in wound healing. Int J Biol Macromol 2018; 116:801-810. [DOI: 10.1016/j.ijbiomac.2018.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022]
|
4
|
Marino-Puertas L, Goulas T, Gomis-Rüth FX. Matrix metalloproteinases outside vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2026-2035. [PMID: 28392403 DOI: 10.1016/j.bbamcr.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Laura Marino-Puertas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
| | - Theodoros Goulas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| |
Collapse
|
5
|
Wanderley MCDA, Neto JMWD, Filho JLDL, Lima CDA, Teixeira JAC, Porto ALF. Collagenolytic enzymes produced by fungi: a systematic review. Braz J Microbiol 2017; 48:13-24. [PMID: 27756540 PMCID: PMC5220638 DOI: 10.1016/j.bjm.2016.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/30/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022] Open
Abstract
Specific proteases capable of degrading native triple helical or denatured collagen have been required for many years and have a large spectrum of applications. There are few complete reports that fully uncover production, characterization and purification of fungi collagenases. In this review, authors searched through four scientific on line data bases using the following keywords (collagenolytic OR collagenase) AND (fungi OR fungus OR fungal) AND (production OR synthesis OR synthesize) AND (characterization). Scientific criteria were adopted in this review to classify found articles by score (from 0 to 10). After exclusion criteria, 21 articles were selected. None obtained the maximum of 10 points defined by the methodology, which indicates a deficiency in studies dealing simultaneously with production, characterization and purification of collagenase by fungi. Among microorganisms studied the non-pathogenic fungi Penicillium aurantiogriseum and Rhizoctonia solani stood out in volumetric and specific collagenase activity. The only article found that made sequencing of a true collagenase showed 100% homology with several metalloproteinases fungi. A clear gap in literature about collagenase production by fungi was verified, which prevents further development in the area and increases the need for further studies, particularly full characterization of fungal collagenases with high specificity to collagen.
Collapse
Affiliation(s)
| | | | - José Luiz de Lima Filho
- Universidade Federal de Pernambuco (UFPE), Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brasil
| | - Carolina de Albuquerque Lima
- Universidade de Pernambuco (UPE), Faculdade de Ciências, Educação e Tecnologia de Garanhuns, Garanhuns, PE, Brasil
| | | | - Ana Lúcia Figueiredo Porto
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Recife, PE, Brasil.
| |
Collapse
|
6
|
|