1
|
Sravya MVN, Simhachalam G, Kumar NSS, Govindarao K, Sandeep TR, Divya D. Anti-pathogenicity of Acanthus ilicifolius leaf extracts against A. hydrophila infection in Labeo rohita fingerlings. AMB Express 2023; 13:86. [PMID: 37598392 PMCID: PMC10440336 DOI: 10.1186/s13568-023-01595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
Antibiotic resistance has become one of the inevitable barrier in aquaculture disease management. Herbal drugs has evolved to be the novel ways of combating drug resistant pathogens. In the current investigation, leaf extracts of mangrove plant, Acanthus ilicifolius were assessed for in vitro studies, among the selected four extracts, methanol extract has expressed highest antibacterial activity against P .aeruginosa (4 ± 0.3 mm), A. hydrophila (5.9 ± 0.5 mm), S. aureus (3.5 ± 0.7 mm) and B. subtilis (2.9 ± 0.5 mm) and antioxidant activity, DPPH (81.3 ± 1.0 AAEµg/ml) and FRAP (139.1 ± 1.5 AAEµg/ml).TPC and TFC were higher in the methanolic extract and has exhibited positive correlation with both DPPH and FRAP assays. Considering the in vitro efficiency, methanol extract was purified successively by column and thin layer chromatography and characterisation by GC-MS unveiled the presence of 2-Propanethiol, Trimethylphosphine, Pentanoyl chloride, Dimethylhydroxymethylphosphine and Propanedinitrile, ethylidene. A. hydrophila infected L. rohita fingerlings has survival percentage 81% and 94% in extract treated groups over 0% in negative control and 71% in positive control.
Collapse
Affiliation(s)
- M V N Sravya
- Department of Zoology and Aquaculture, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India
| | - G Simhachalam
- Department of Zoology and Aquaculture, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India.
| | - N S Sampath Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, 522213, India
| | - K Govindarao
- Department of Zoology and Aquaculture, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India
| | - T Rahul Sandeep
- Department of Zoology and Aquaculture, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India
| | - D Divya
- Department of Zoology and Aquaculture, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India
| |
Collapse
|
2
|
Paunescu A, Ponepal CM, Tofan L, Brinzea G, Tantu MM, Mihaescu CF, Draghiceanu OA, Popoviciu DR, Fagaras MM, Vasile D, Soare LC. Ecotoxicological Risk Assessment of Actellic 50 EC Insecticide on Non-Target Organisms in Parallel with the Application of Standardized Tests. TOXICS 2022; 10:745. [PMID: 36548578 PMCID: PMC9788039 DOI: 10.3390/toxics10120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
This paper contributes to the ecotoxicological risk assessment of the Actellic 50 EC insecticide (with 50% pirimiphos-methyl as the active substance) tested on non-target organisms. The insecticide concentrations tested were the same for all organisms (0.1, 0.01, and 0.001 mg L-1 of Actellic 50 EC), with an exposure of 3-5-21 days for plants and 4-5-14 days for animals. The non-target organisms tested were both plants (wheat and two ferns) and animals (the Prussian carp and marsh frog tadpoles). The tested insecticide significantly inhibited the growth of roots in wheat, a result that was also confirmed by a microbiotest application (62% root growth inhibition in sorghum and 100% germination inhibition in white mustard and garden cress). In ferns, even for the lowest concentration, the percentage of germinated spores was inhibited by 40% for Asplenium scolopendrium. The recorded toxicological effects of Actellic 50 EC upon the Prussian carp included a decrease in the respiratory rate and oxygen consumption, an increase in the number of erythrocytes and leukocytes, and an increase in blood glucose levels. The highest concentration (0.1 mg L-1 of Actellic 50 EC) caused a 50% decrease in the survival rate of marsh frog tadpoles after 5 days of exposure, negatively affecting body volume and length. Given the high degree of toxicity of the insecticide Actellic 50 EC, we recommend continuing investigations on non-target species, including both plants and animals, as the sub-chronic effects are quite little known in the scientific literature.
Collapse
Affiliation(s)
- Alina Paunescu
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Cristina Maria Ponepal
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Lucica Tofan
- Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Gheorghita Brinzea
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Monica Marilena Tantu
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Cristina Florina Mihaescu
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Oana Alexandra Draghiceanu
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Dan Razvan Popoviciu
- Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Marius Mirodon Fagaras
- Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Daniela Vasile
- Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Liliana Cristina Soare
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| |
Collapse
|
3
|
Lee W, An G, Park H, Lim W, Song G. Diflubenzuron leads to apoptotic cell death through ROS generation and mitochondrial dysfunction in bovine mammary epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104893. [PMID: 34301355 DOI: 10.1016/j.pestbp.2021.104893] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Pesticides, which are used in agriculture and forestry to eliminate insects, are a major cause of environmental pollution. Among them, diflubenzuron (DFB), 1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl) urea, is a common benzoylurea insecticide that hinders larval development, primarily in Aedes aegypti larvae. Many experts have announced the biological toxicity of DFB in various species. However, the toxicity of benzoylurea pesticides, including DFB, to bovine mammary epithelial cells (MAC-T) is unclear. Therefore, in this study, we confirmed the cytotoxic effects of DFB on the viability and proliferation of MAC-T cells. Additionally, we observed that DFB induced lipid peroxidation through reactive oxygen species (ROS) production, resulting in an increase in transcriptional gene expression related to inflammatory response. Moreover, we demonstrated mitochondrial dysfunction including depolarization of the mitochondrial membrane, perturbation of calcium homeostasis, and, eventually, apoptosis. Furthermore, we identified DFB-triggered signaling pathways related to ROS generation and cell proliferation, as well as their interactions, by treating the cells with pharmacological inhibitors in combination with DFB. DFB attenuated the phosphorylation of AKT, P70S6K, S6, and ERK1/2 and facilitated the phosphorylation of JNK and c-Jun. These results show that DFB can induce apoptotic cell death via ROS generation and mitochondrial dysfunction in MAC-T cells.
Collapse
Affiliation(s)
- Woonghee Lee
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Alavinia SJ, Mirvaghefi A, Farahmand H, Rafiee G, Alavinia SJ, Shiry N, Moodi S. DNA damage, acetylcholinesterase activity, and hematological responses in rainbow trout exposed to the organophosphate malathion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109311. [PMID: 31272021 DOI: 10.1016/j.ecoenv.2019.05.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Effects of sub-lethal concentrations (0 (control), 0.009, 0.014, and 0.023 ppm) of the organophosphate insecticide "malathion" to rainbow trout (Oncorhynchus mykiss) after the determination of LC50-96 h value (0.093 ppm) were evaluated. Changes in biomarkers of neurotoxicity (acetylcholinesterase (AChE) activity), genotoxicity (DNA damage), and hematological parameters (red (RBC) and white (WBC) blood cell count, hemoglobin (Hb), hematocrit (Hct), mean cell hemoglobin (MCH), mean cell volume (MCV), and mean cell hemoglobin concentration (MCHC)) were assessed for a 15-day exposure. A significant time- and dose-dependent reduction in AChE activities of gill, muscle, brain, and liver tissues was found. However, the AChE activity was less affected by malathion concentration than by exposure time. DNA damage of erythrocytes at different malathion concentrations increased by increasing the experimental time up to the fourth day. A decrease in the count of WBC, RBC, and Hct and an increase in the number of MCH and MCV were observed by increasing malathion exposure dose and time (p < 0.05). An increase in the malathion concentration and exposure time significantly resulted in a decrease in Hb and an increase in MCHC. A significant improvement in AChE activity; DNA damage; and RBC, Hb, Hct, MCV, and MCH indices was detected during a 30-day recovery period, but the WBC count changed insignificantly. The recovery pattern based on 100% water exchange with clean water could be a successful strategy to improve the biomarker responses of rainbow trout habituating in contaminated aquatic environments.
Collapse
Affiliation(s)
- Seyed Jalil Alavinia
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, 31585-4314, Iran.
| | - Alireza Mirvaghefi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, 31585-4314, Iran
| | - Hamid Farahmand
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, 31585-4314, Iran
| | - Gholamreza Rafiee
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, 31585-4314, Iran
| | | | - Nima Shiry
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, 31585-4314, Iran
| | - Saeed Moodi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, 31585-4314, Iran
| |
Collapse
|
5
|
Sifi K, Soltani N. Seasonal changes of two biomarkers of oxidative stress (LDH, MDA) in the edible mollusc Donax trunculus (Mollusca: Bivalvia) from the Gulf of Annaba (Algeria): correlation with carbohydrate and lipid contents. MOLLUSCAN RESEARCH 2018. [DOI: 10.1080/13235818.2018.1499389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Karima Sifi
- Laboratory of Applied Animal Biology, Faculty of Sciences, Department of Biology, University Badji Mokhtar of Annaba, Annaba, Algeria
| | - Noureddine Soltani
- Laboratory of Applied Animal Biology, Faculty of Sciences, Department of Biology, University Badji Mokhtar of Annaba, Annaba, Algeria
| |
Collapse
|
6
|
Lopes RM, Bezerra ALA, Hauser-Davis RA, de Oliveira MM, Salles JB, Cunha Bastos VLF, Bastos JC. The importance of an efficient extraction protocol for the use of fish muscle cholinesterases as biomarkers. Talanta 2018; 179:769-774. [PMID: 29310306 DOI: 10.1016/j.talanta.2017.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
Esterase activity found in muscle extracts is useful to evaluate harmful effects of anticholinesterase pollutants. Yet, most procedures applied in the extraction of fish muscle esterases in order to investigate their activity as a biomarker of environmental exposure comprise the homogenization of muscle tissue in low-salt solutions, followed by centrifugation to separate the supernatant as the enzyme source. However, acetylcholinesterase (AChE), the main target in these monitoring efforts, is a membrane-bound protein and is only present in muscle extracts if homogenization is carried out using chaotropic high-salt solutions. In this context, four extraction procedures using muscle tissue from six fish species were evaluated in order to establish a reproducible and reliable AChE assay for the determination of this biomarker. Results indicate that over 80% of AChE activity might be lacking in low-salt supernatants, and that the highest activities are obtained after extraction with solutions containing either 1molL-1 NaCl or 1molL-1 NaCl plus 3% Triton X-100, preserving almost 100% esterase activity over acetylthiocholine as substrate after centrifugation. Thus, many studies in the literature suffer from theoretical flaws and report erroneous AChE activity, since typical muscle AChE activity, the end-point biomarker for anticholinesterase pollutants, may have not been consistently assayed.
Collapse
Affiliation(s)
- Renato Matos Lopes
- Laboratório de Comunicação Celular, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Adriana L A Bezerra
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Rachel A Hauser-Davis
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Manildo Marcião de Oliveira
- Laboratório de Ecotoxicologia e Microbiologia Ambiental, Instituto Federal de Educação, Ciência e Tecnologia Fluminense, Cabo Frio, RJ, Brazil
| | - João B Salles
- Departamento de Bioquímica, Fundação Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil
| | - Vera L F Cunha Bastos
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jayme Cunha Bastos
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Karami-Mohajeri S, Ahmadipour A, Rahimi HR, Abdollahi M. Adverse effects of organophosphorus pesticides on the liver: a brief summary of four decades of research. Arh Hig Rada Toksikol 2018; 68:261-275. [DOI: 10.1515/aiht-2017-68-2989] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023] Open
Abstract
Abstract
Organophosphorus pesticides (OPs) are widely used volatile pesticides that have harmful effects on the liver in acute and chronic exposures. This review article summarises and discusses a wide collection of studies published over the last 40 years reporting on the effects of OPs on the liver, in an attempt to propose general mechanisms of OP hepatotoxicity and possible treatment. Several key biological processes have been reported as involved in OP-induced hepatotoxicity such as disturbances in the antioxidant defence system, oxidative stress, apoptosis, and mitochondrial and microsomal metabolism. Most studies show that antioxidants can attenuate oxidative stress and the consequent changes in liver function. However, few studies have examined the relationship between OP structures and the severity and mechanism of their action. We hope that future in vitro, in vivo, and clinical trials will answer the remaining questions about the mechanisms of OP hepatotoxicity and its management.
Collapse
Affiliation(s)
- Somayyeh Karami-Mohajeri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Tehran , Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Ahmad Ahmadipour
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Tehran , Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Mohammad Abdollahi
- Kerman University of Medical Sciences, Kerman , Pharmaceutical Sciences Research Center, Iran
- Department of Toxicology and Pharmacology4, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran , Iran
| |
Collapse
|
8
|
Owolabi OD, Omotosho JS. Atrazine-Mediated Oxidative Stress Responses and Lipid Peroxidation in the Tissues of Clarias gariepinus. IRANIAN JOURNAL OF TOXICOLOGY 2017. [DOI: 10.29252/arakmu.11.2.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Salehi M, Jafari M, Asgari A, Salimian M, Abbasnezhad M, Haji Hosseini R, Hajigholamali M. Strain-Related Differences on Response of Liver and Kidney Antioxidant Defense System in Two Rat Strains Following Diazinon Exposure. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/zjrms-5988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Ramesh M, Narmadha S, Poopal RK. Toxicity of furadan (carbofuran 3% g) in Cyprinus carpio: Haematological, biochemical and enzymological alterations and recovery response. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2015. [DOI: 10.1016/j.bjbas.2015.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
11
|
Lin YC, Hsieh IC, Chen PC. Long-term day-and-night rotating shift work poses a barrier to the normalization of alanine transaminase. Chronobiol Int 2013; 31:487-95. [PMID: 24354767 DOI: 10.3109/07420528.2013.872120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To evaluate the impact of day-and-night rotating shift work (RSW) on liver health, we performed a retrospective analysis of the association between long-term RSW exposure and the normalization of plasma alanine transaminase (ALT) levels over a five-year period. The data from physical examinations, blood tests, abdominal sonographic examinations, personal histories, and occupational records were collected from a cohort of workers in a semiconductor manufacturing company. The sample population was divided into three subgroups for analysis, according to self-reported shift work status over the five-year interval: persistent daytime workers, workers exposed intermittently to RSW (i-RSW), and workers exposed persistently to RSW (p-RSW). Records were analyzed for 1196 male workers with an initial mean age of 32.5 years (SD 6.0 years), of whom 821 (68.7%) were identified as rotating shift workers, including 374 i-RSW (31.3%) and 447 p-RSW workers (37.4%). At the beginning of the follow-up, 275 were found to have elevated ALT (e-ALT): 25.1% daytime workers, 23.0% i-RSW workers, and 21.3% p-RSW workers (p = 0.098). Of those with e-ALT at the beginning, 101 workers showed normalized serum ALT levels at the end of five-year follow-up: 40 (10.7%) of 375 daytime workers, 32 (8.6%) of 374 i-RSW workers, and 29 (6.5%) of 447 p-RSW workers (p = 0.016). Compared with the workers having persistent e-ALT at the end of follow-up, the workers normalized serum ALT levels had significantly lesser exposures to RSW during follow-up. By performing multivariate logistic regression analyses, and comparing with the persistent daytime co-workers, after controlling for confounding variables (age, occupational factors, educational levels, lifestyle factors, metabolic syndrome, hepatovirus infection, and fatty liver), analysis indicated that the workers exposed to p-RSW were 46% less likely (OR, 0.54; 95% CI, 0.30-0.95; p = 0.03) to attain normal ALT levels within a five-year interval. These observations demonstrate that persistent day-and-night RSW pose a vigorous obstacle to the normalization of e-ALT among workers with preexisting abnormal liver function. We suggest that workers and managers approach with caution the consideration of assigning or accepting long-term day-and-night RSW when an employee health screening shows evidence of abnormal liver function.
Collapse
Affiliation(s)
- Yu-Cheng Lin
- Department of Occupational Medicine, En Chu Kong Hospital , New Taipei , Taiwan
| | | | | |
Collapse
|
12
|
Oliveira C, Almeida J, Guilhermino L, Soares AMVM, Gravato C. Acute effects of deltamethrin on swimming velocity and biomarkers of the common prawn Palaemon serratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:209-16. [PMID: 22967730 DOI: 10.1016/j.aquatox.2012.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 08/09/2012] [Accepted: 08/14/2012] [Indexed: 05/22/2023]
Abstract
The main purpose of the present study was to investigate the effects of deltamethrin on biomarkers and behavior of Palaemon serratus (common prawn), since this attempt to link different levels of biological organization will allow determining which biomarkers might be ecologically relevant and will be useful to complement the information about the effects of pesticides by using behavioral parameters. Therefore, parameters of liver antioxidant status, energy metabolism and neurotransmission were determined in different tissues of the common prawn and used to assess the effects at sub-individual level, whereas swimming velocity was used to assess the effects at the individual level. It was also investigated if the swimming velocity can be used as an endpoint in ecotoxicology bioassays and if it can be as sensitive as biomarker endpoints. Swimming velocity was significantly reduced in prawns exposed to deltamethrin, showing a lowest observed effect (LOEC) of 0.6 ng L(-1). Eye acetylcholinesterase (AChE) activity was significantly increased in prawns exposed to 0.6, 1.2 and 2.4 ng L(-1) deltamethrin, whereas muscle cholinesterase (ChE) activity was significantly increased in prawns exposed to 19 and 39 ng L(-1). On the other hand, lactate dehydrogenase (LDH) activity was significantly increased in muscle of prawns exposed to 0.6, 1.2, 2.4, 4.9 ng L(-1) deltamethrin, showing that organisms were requiring additional energy, but probably using it for detoxification processes rather than locomotion, since swimming velocity was inhibited. Glutathione S-transferase (GST) activity was significantly increased in the digestive gland of common prawn exposed to 19 and 39 ng L(-1) deltamethrin. Catalase (CAT) activity was significantly increased in digestive gland of prawn exposed to 19 ng L(-1) deltamethrin. However, CAT activity decreased in digestive gland of prawn exposed to 39 ng L(-1), suggesting an antioxidant defense system failure concomitant with high levels of lipid peroxidation. Thus, global results showed that decreased swimming velocity was not associated with cholinesterase inhibition. In fact, the impairment of swimming velocity may be due to allocation of energy for detoxification and antioxidant protection instead of swimming activity. The present study showed that swimming velocity could be used as an ecologically relevant tool and a sensitive endpoint to assess and complement the study of pesticide effects on marine organisms.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|
13
|
Ndiaye A, Sanchez W, Durand JD, Budzinski H, Palluel O, Diouf K, Ndiaye P, Panfili J. Multiparametric approach for assessing environmental quality variations in West African aquatic ecosystems using the black-chinned tilapia (Sarotherodon melanotheron) as a sentinel species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:4133-4147. [PMID: 22645008 DOI: 10.1007/s11356-012-0979-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
The study highlights the potential of the black-chinned tilapia to be used as a sentinel to assess environmental contaminants based on the use of a set of biomarkers. The usefulness of fish species as sentinels for assessing aquatic environment contamination was tested using a set of biomarkers in Senegalese environments characterized by multi-pollution sources. The black-chinned tilapia (Sarotherodon melanotheron) was selected as a sentinel because of its abundance, wide distribution in all coastal aquatic ecosystems and physiological properties. The potential influence of confounding factors such as salinity on biomarker in the tilapia has been examined. Individuals were sampled during two seasons (dry and wet) in eight sites characterized by various degrees of anthropogenic contamination and different salinities (from 0 to 102 psu). Biomarkers-including growth rate (GR), condition factor (CF), biotransformation enzymes such as 7-ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST), lipid peroxidation (TBARS) and acetylcholinesterase (AChE)-were measured. Chemical contaminant [polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs)] levels showed different sources of contamination with relatively high concentrations of PAHs in the Hann Bay and Foundiougne locations. The most sensitive biomarker present in different sites according to the principal component analysis is EROD. Few variations of the AChE activity and TBARS levels were found. No clear relationship was found between biomarker responses and salinity, but GR and CF were lower in hypersaline conditions. Tilapia is responsive to environmental contaminants such as PAHs, OCPs and PCBs. The S. melanotheron multiparametric approach showed a better discrimination of sites.
Collapse
Affiliation(s)
- Awa Ndiaye
- UMR 5119 ECOSYM, Université Montpellier 2, place Eugène Bataillon, CC 093, 34095, Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Karami-Mohajeri S, Abdollahi M. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol 2010; 30:1119-40. [PMID: 21071550 DOI: 10.1177/0960327110388959] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pesticides, including organophosphate (OP), organochlorine (OC), and carbamate (CB) compounds, are widely used in agricultural and indoor purposes. OP and CB act as acetyl cholinesterase (AChE) inhibitors that affect lots of organs such as peripheral and central nervous systems, muscles, liver, pancreas, and brain, whereas OC are neurotoxic involved in alteration of ion channels. There are several reports about metabolic disorders, hyperglycemia, and also oxidative stress in acute and chronic exposures to pesticides that are linked with diabetes and other metabolic disorders. In this respect, there are several in vitro and in vivo but few clinical studies about mechanism underlying these effects. Bibliographic databases were searched for the years 1963-2010 and resulted in 1652 articles. After elimination of duplicates or irrelevant papers, 204 papers were included and reviewed. Results indicated that OP and CB impair the enzymatic pathways involved in metabolism of carbohydrates, fats and protein within cytoplasm, mitochondria, and proxisomes. It is believed that OP and CB show this effect through inhibition of AChE or affecting target organs directly. OC mostly affect lipid metabolism in the adipose tissues and change glucose pathway in other cells. As a shared mechanism, all OP, CB and OC induce cellular oxidative stress via affecting mitochondrial function and therefore disrupt neuronal and hormonal status of the body. Establishing proper epidemiological studies to explore exact relationships between exposure levels to these pesticides and rate of resulted metabolic disorders in human will be helpful.
Collapse
Affiliation(s)
- Somayyeh Karami-Mohajeri
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|