1
|
Liu J, Zhang Z, Zhang L, Liu X, Yang D, Ma X. Variations of estradiol-17β and testosterone levels correlated with gametogenesis in the gonad of Zhikong scallop (Chlamys farreri) during annual reproductive cycle. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To assess the potential roles of sex steroids in modulating reproductive processes in the Zhikong scallop (Chlamys farreri (Jones and Preston, 1904)), variations in estradiol-17β (E2) and testosterone (T) levels in gonads were examined monthly from January to December 2012 by enzyme-linked immunosorbent assay (ELISA). The mean concentrations of E2 and T in gonads ranged from 75.07 to 666.24 pg/g and from 91.09 to 506.28 pg/g, respectively. Concentrations of E2 were significantly higher in ovaries than in testes, while T concentrations were higher in testes than in ovaries during gametogenesis. Concentrations of E2 in females and T in males increased with development and maturation of gonad, attained the highest value before spawning, and decreased rapidly after spawning. A positive correlation between E2 levels and oocyte diameters (r = 0.743, P < 0.05, n = 25) was observed, suggesting that E2 may play a role in oogenesis. These findings indicate that E2 and T, which are highly correlated with the reproductive cycle, may play an important role in sex determination, sex differentiation, gametogenesis, and spawning in C. farreri.
Collapse
Affiliation(s)
- J. Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - Z. Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - L. Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - X. Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - D. Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - X. Ma
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| |
Collapse
|
2
|
Finger JW, Gogal RM. Endocrine-disrupting chemical exposure and the American alligator: a review of the potential role of environmental estrogens on the immune system of a top trophic carnivore. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:704-714. [PMID: 24051988 DOI: 10.1007/s00244-013-9953-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) alter cellular and organ system homeostasis by interfering with the body's normal physiologic processes. Numerous studies have identified environmental estrogens as modulators of EDC-related processes in crocodilians, notably in sex determination. Other broader studies have shown that environmental estrogens dysregulate normal immune function in mammals, birds, turtles, lizards, fish, and invertebrates; however, the effects of such estrogenic exposures on alligator immune function have not been elucidated. Alligators occupy a top trophic status, which may give them untapped utility as indicators of environmental quality. Environmental estrogens are also prevalent in the waters they occupy. Understanding the effects of these EDCs on alligator immunity is critical for managing and assessing changes in their health and is thus the focus of this review.
Collapse
Affiliation(s)
- John W Finger
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
3
|
Taraska NG, Anne Böttger S. Selective initiation and transmission of disseminated neoplasia in the soft shell clam Mya arenaria dependent on natural disease prevalence and animal size. J Invertebr Pathol 2012; 112:94-101. [PMID: 23079141 DOI: 10.1016/j.jip.2012.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/22/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022]
Abstract
Disseminated neoplasia, a diffuse tumor of the hemolymph system, is one of the six most destructive diseases among bivalve mollusk populations, characterized by the development of abnormal, rounded blood cells that actively proliferate. Though the specific etiology of disseminated neoplasia in Mya arenaria remains undetermined, the involvement of viral pathogens and/or environmental pollutants has been suggested and considered. The current study used 5-bromodeoxyuridine (BrDU) known to induce the murine leukemia virus and filtered neoplastic hemolymph to initiate disseminated neoplasia in clams from different populations and size classes respectively. M. arenaria from three locations of different natural neoplasia occurrences were divided into a control and three experimental treatments and injected with 200 μl of sterile filtered seawater or 50-200 μg/ml BrDU respectively. In a concurrent experiment, animals from different size classes were injected with 2.5% total blood volume of 0.2 μm filtered blood from a fully neoplastic animal. Animals were biopsied weekly and cell neoplasia development was counted and scored as 0-25, 26-50, 51-75 and 76-100% neoplastic hemocytes (stages 1-4) in 50 μl samples. BrDU injection demonstrated that neoplasia development in M. arenaria was dose dependent on BrDU concentration. In addition, natural disease prevalence at the source location determined initiation of neoplasia induction, with animals from the area of the highest natural disease occurrence displaying fastest neoplasia development (p=0.0037). This could imply that depending on the natural disease occurrence, a potential infectious agent may remain dormant in normal (stage 1) individuals in higher concentrations until activated, i.e. through chemical injection or potentially stress. The size experiment demonstrated that only M. arenaria between 40 and 80 mm developed 26-100% neoplastic hemocytes when injected with filtered neoplastic hemolymph, indicating that individuals smaller than 20mm or larger than 80 mm were not or no longer susceptible to disease development. So far neoplasia studies have not considered natural disease prevalence or size involvement in neoplasia development and our results indicate that these should be future considerations in neoplasia examinations.
Collapse
Affiliation(s)
- Norah G Taraska
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | | |
Collapse
|
4
|
Morishita F, Furukawa Y, Matsushima O, Minakata H. Regulatory actions of neuropeptides and peptide hormones on the reproduction of molluscsThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2010. [DOI: 10.1139/z10-041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reproductive success of individual animals is essential for the survival of any species. Molluscs have adapted to a wide variety of environments (freshwater, brackish water, seawater, and terrestrial habits) and have evolved unique tactics for reproduction. Both of these features attract the academic interests of scientists. Because neuropeptides and peptide hormones play critical roles in neural and neurohormonal regulation of physiological functions and behaviors in this animal group, the regulatory actions of these messengers in reproduction have been extensively investigated. In this review, we will briefly summarize how peptidergic messengers are involved in various aspects of reproduction, using some peptides such as egg-laying hormone, caudo-dorsal cell hormone, APGWamide, and gonadotropin-releasing hormone as typical examples.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Yasuo Furukawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Osamu Matsushima
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Hiroyuki Minakata
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| |
Collapse
|
5
|
Kidd CE, Kidd MR, Hofmann HA. Measuring multiple hormones from a single water sample using enzyme immunoassays. Gen Comp Endocrinol 2010; 165:277-85. [PMID: 19607832 DOI: 10.1016/j.ygcen.2009.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 12/24/2022]
Abstract
Many aquatic species, such as teleosts, release into the water and detect multiple bioactive substances to assist in schooling, migration, alarm reactions, and to stimulate behavioral and physiological responses during reproduction and in parent-offspring interactions. Understanding the complex relationship between hormones, behavior and their function in communication requires the simultaneous examination of multiple circulating hormones. However, repeated blood sampling within a short time period is not possible in smaller animals without impacting the very behaviors under investigation. The non-invasive technique of collecting and measuring hormone values in holding water using either radioimmunoassay (RIA) or enzyme immunoassay (EIA) is becoming widely used in teleost research. Commercial assay kits in particular enable rapid and reliable data generation, yet their assay buffers are often specific and potentially incompatible with each other, which can hinder measuring multiple hormones from the same sample. We present here the validation and application of a "nested" elution technique we developed that allows for repeated sampling of multiple reproductive hormones - testosterone (T), 17beta-estradiol (E2), progesterone (P), prostaglandin F(2 alpha) (PGF) and 11-ketotestosterone (11KT) - from individual samples of animal holding water by using commercial EIA systems. Our results show that when using appropriate controls to account for possible technical and biological confounds, this technique provides a powerful new tool for research in aquatic endocrinology and physiology.
Collapse
Affiliation(s)
- Celeste E Kidd
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
6
|
Bouchard B, Gagné F, Fortier M, Fournier M. An in-situ study of the impacts of urban wastewater on the immune and reproductive systems of the freshwater mussel Elliptio complanata. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:132-40. [PMID: 19362165 DOI: 10.1016/j.cbpc.2009.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/02/2009] [Accepted: 04/02/2009] [Indexed: 11/27/2022]
Abstract
The goal of this study was to examine the disruptive effects of municipal effluents on the immune and reproductive systems of freshwater mussels. For 30 days, caged mussels were immersed in the Rivière des Mille Iles (Quebec, Canada), 150 m both upstream and downstream from two urban wastewater treatment plants: station F (Fabreville) and station A (Auteuil), which serve the city of Laval. Station F is 12 km upstream from station A. The immune and reproductive statuses of the mussels were thereafter determined. Though the weight/shell length ratio was not affected, the effluent induced mortality up to 60% at downstream sites. Total hemocyte counts increased, and phagocytosis and lysozyme activities were induced at station F, whereas these responses were suppressed at station A. Heterotrophic bacteria levels in mussels were negatively correlated with phagocytosis, showing the importance of this process in defending against infection. Inflammation biomarkers such as nitric oxide and cyclooxygenase activity were the same for all sites but were positively correlated with phagocytosis activity. The production of vitellogenin (Vtg)-like proteins was significantly induced at the site downstream from station A and was strongly associated with phagocytosis. This was further supported through analysis of covariance, of Vtg responses against phagocytosis, revealing that Vtg was no longer induced at the sites upstream and downstream from station A. The data support the contention that Vtg was involved, in part at least, in the immune system in mussels. Both Vtg and immune status are impacted by urban effluents and should be considered when using the Vtg biomarker to search for the presence of (xeno)estrogens in contaminated environments.
Collapse
Affiliation(s)
- B Bouchard
- Environment Canada, Fluvial Ecosystem Research, 105 McGill, 7th Floor, Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
7
|
Pichaud N, Pellerin J, Fournier M, Gauthier-Clerc S, Rioux P, Pelletier E. Oxidative stress and immunologic responses following a dietary exposure to PAHs in Mya arenaria. Chem Cent J 2008; 2:23. [PMID: 19055737 PMCID: PMC2613372 DOI: 10.1186/1752-153x-2-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/02/2008] [Indexed: 11/18/2022] Open
Abstract
Background The aim of this research was to investigate oxidative stress and immune responses following a dietary polycyclic aromatic hydrocarbon (PAH) exposure in a marine bioindicator organism, the soft shell clam, Mya arenaria. Immune parameters in hemolymph (haemocyte number, efficiency of phagocytosis and haemocyte activity) and assessment of oxidative stress using catalase (CAT) activity and levels of malondialdehyde (MDA) performed on the digestive gland were estimated as biomarkers in clams fed in mesocosm with PAH contaminated phytoplankton. MDA levels and CAT activities were also measured in situ in organisms sampled in a control site (Metis Beach, Québec, Canada) as well as organisms sampled in a site receiving domestic effluents (Pointe-au-Père, Québec, Canada), to assess effects of abiotic variables related to seasonal variations and mixed contamination on the selected parameters. Results Results on immune parameters suggest that the PAHs may interfere with the maturation and/or differentiation processes of haemocytes. MDA results showed that lipid peroxidation did not occur following the exposure. The levels of CAT activity corresponded to weak antioxidant activity (no significant differences). Recovery was noted for all the immune endpoints at the end of the experiment. Conclusion Results suggest that immune parameters are early biomarkers that can efficiently detect a physiological change during a short term exposure to low concentrations of PAHs. The in situ survey (in the natural environment) suggested that clams from the Pointe-au-Père site did not show any oxidative stress as well as the clams contaminated in mesocosm, probably due to the low concentrations of PAHs used for this study. MDA levels increased however in organisms from Metis Beach, a response probably related to domestic effluents or parasitism.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Institut des Sciences de la Mer de Rimouski, Rimouski, Québec, Canada.
| | | | | | | | | | | |
Collapse
|