1
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
2
|
Franco-Martínez L, Martínez-Subiela S, Escribano D, Schlosser S, Nöbauer K, Razzazi-Fazeli E, Romero D, Cerón JJ, Tvarijonaviciute A. Alterations in haemolymph proteome of Mytilus galloprovincialis mussel after an induced injury. FISH & SHELLFISH IMMUNOLOGY 2018; 75:41-47. [PMID: 29407612 DOI: 10.1016/j.fsi.2018.01.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 06/07/2023]
Abstract
A proteomic and biochemical approach was performed to assess the effects of an induced muscle injury on the haemolymph of bivalve molluscs. For this purpose, Mytilus galloprovincialis were exposed to puncture of adductor muscle for three consecutive days, and their haemolymph proteome was then compared to healthy animals using 2-dimensional electrophoresis (2-DE) to identify proteins that differed significantly in abundance. Those proteins were then subjected to tandem mass spectrometry and 6 proteins, namely myosin, tropomyosin, CuZn superoxide dismutase (SOD), triosephosphate isomerase, EP protein and small heat shock protein were identified. SOD and tropomyosin changes were verified by spectrophotometric measurements and western blotting, respectively. As some of the proteins identified are related to muscular damage and oxidative stress, other biomarkers associated with these processes that can be evaluated by automatic biochemical assays were measured including troponin, creatine kinase (CK), and aspartate aminotransferase (AST) for muscle damage, and SOD, trolox equivalent antioxidant capacity (TEAC) and esterase activity (EA) for oxidative stress. Significantly higher concentrations of troponin, CK, AST, and TEAC were observed in mussels after puncture, being also possible biomarkers of non-specific induced damage.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Damian Escribano
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain; Department of Animal and Food Science, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sarah Schlosser
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katharina Nöbauer
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Diego Romero
- Area of Toxicology, Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Jose Joaquin Cerón
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain.
| |
Collapse
|
3
|
González-Fernández C, Albentosa M, Sokolova I. Interactive effects of nutrition, reproductive state and pollution on molecular stress responses of mussels, Mytilus galloprovincialis Lamarck, 1819. MARINE ENVIRONMENTAL RESEARCH 2017; 131:103-115. [PMID: 28967508 DOI: 10.1016/j.marenvres.2017.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Marine bivalves including mussels Mytilus galloprovincialis are commonly used as sentinels for pollution monitoring and ecosystem health assessment in the coastal zones. Use of biomarkers to assess the pollution effects assumes that the effects of pollutants on the biomarkers exceed the natural background variability; yet this assumption has rarely been tested. We exposed mussels at different reproductive stages and nutritive states to two concentrations of a polycyclic aromatic hydrocarbon (fluoranthene, 3 and 60 μg L-1) for three weeks. Expression levels of the molecular biomarkers related to the detoxification and general stress response [cytochrome P450 oxidase (CYP450), glutathione S-transferases (GST-α; GST-S1; GST-S2), the multixenobiotic resistance protein P-glycoprotein (PgP), metallothioneins (MT10 and MT20), heat shock proteins (HSP22, HSP70-2; HSP70-3; HSP70-4), as well as mRNA expression of two reproduction-related genes, vitellogenin (Vitel) and vitelline coat lysin M7 (VCLM7)] were measured. The mussels' nutrition and reproductive state affected the baseline mRNA levels of molecular biomarkers and modulated the transcriptional responses of biomarker genes to the pollutant exposure. Thus, mussel physiological state could act as a confounding factor in the evaluation of the response of pollution through molecular biomarkers. The biomarker baseline levels must be determined across a range of physiological states to enable the use of biomarkers in monitoring programs.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Varadero, 1, 30740 San Pedro del Pinatar, Murcia, Spain.
| | - Marina Albentosa
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Varadero, 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Inna Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Sci Rep 2017; 7:11716. [PMID: 28916745 PMCID: PMC5601910 DOI: 10.1038/s41598-017-11894-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022] Open
Abstract
Marine molluscs, including oysters, can concentrate high levels of cadmium (Cd) in their soft tissues, but the molecular mechanisms of Cd toxicity remain speculative. In this study, Pacific oysters (Crassostrea gigas) were exposed to Cd for 9 days and their gills were subjected to proteomic analysis, which were further confirmed with transcriptomic analysis. A total of 4,964 proteins was quantified and 515 differentially expressed proteins were identified in response to Cd exposure. Gene Ontology enrichment analysis revealed that excess Cd affected the DNA and protein metabolism. Specifically, Cd toxicity resulted in the inhibition of DNA glycosylase and gap-filling and ligation enzymes expressions in base excision repair pathway, which may have decreased DNA repair capacity. At the protein level, Cd induced the heat shock protein response, initiation of protein refolding as well as degradation by ubiquitin proteasome pathway, among other effects. Excess Cd also induced antioxidant responses, particularly glutathione metabolism, which play important roles in Cd chelation and anti-oxidation. This study provided the first molecular mechanisms of Cd toxicity on DNA and protein metabolism at protein levels, and identified molecular biomarkers for Cd toxicity in oysters.
Collapse
|
5
|
Valton E, Wawrzyniak I, Amblard C, Combourieu B, Bayle ML, Desmolles F, Kwiatkowski F, Penault-Llorca F, Bamdad M. P-gp expression levels in the erythrocytes of brown trout: a new tool for aquatic sentinel biomarker development. Biomarkers 2017; 22:566-574. [PMID: 28583029 DOI: 10.1080/1354750x.2017.1338314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT P-glycoprotein (P-gp) is a ubiquitous membrane detoxification pump involved in cellular defence against xenobiotics. Blood is a hub for the trade and transport of physiological molecules and xenobiotics. Our recent studies have highlighted the expression of a 140-kDa P-gp in brown trout erythrocytes in primary cell culture and its dose-dependent response to Benzo[a]pyrene pollutant. OBJECTIVE The purpose of this study was focused on using P-gp expression in brown trout erythrocytes as a biomarker for detecting the degree of river pollution. METHODS abcb1 gene and P-gp expression level were analysed by reverse transcriptase-PCR and Western blot, in the erythrocytes of brown trouts. The latter were collected in upstream and downstream of four rivers in which 17 polycyclic aromatic hydrocarbons and 348 varieties of pesticides micro-residues were analysed by liquid chromatography and mass spectrometry. RESULTS The abcb1 gene and the 140-kDa P-gp were not expressed in trout erythrocytes from uncontaminated river. In contrast, they are clearly expressed in contaminated rivers, in correlation with the river pollution degree and the nature of the pollutants. CONCLUSIONS This biological tool may offer considerable advantages since it provides an effective response to the increasing need for an early biomarker.
Collapse
Affiliation(s)
- Emeline Valton
- a Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Fd INSERM, UMR 1240 Imagerie Moléculaire et Stratégies Théranostiques , Clermont Ferrand , France.,b Université Clermont Auvergne, Centre Jean Perrin, INSERM, UMR 1240 Imagerie Moléculaire et Stratégies Théranostiques , Clermont Ferrand , France.,c Université Clermont Auvergne CNRS UMR 6023 Laboratoire Microorganismes Génome et Environnement , Clermont-Ferrand , France
| | - Ivan Wawrzyniak
- c Université Clermont Auvergne CNRS UMR 6023 Laboratoire Microorganismes Génome et Environnement , Clermont-Ferrand , France
| | - Christian Amblard
- c Université Clermont Auvergne CNRS UMR 6023 Laboratoire Microorganismes Génome et Environnement , Clermont-Ferrand , France
| | | | | | - François Desmolles
- e Fédération pour la Pêche et la Protection du Milieu Aquatique du Puy de Dôme (F.P.P.M.A. 63), Site de Marmilhat Sud , Lempdes , France
| | - Fabrice Kwiatkowski
- b Université Clermont Auvergne, Centre Jean Perrin, INSERM, UMR 1240 Imagerie Moléculaire et Stratégies Théranostiques , Clermont Ferrand , France
| | - Frédérique Penault-Llorca
- a Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Fd INSERM, UMR 1240 Imagerie Moléculaire et Stratégies Théranostiques , Clermont Ferrand , France.,b Université Clermont Auvergne, Centre Jean Perrin, INSERM, UMR 1240 Imagerie Moléculaire et Stratégies Théranostiques , Clermont Ferrand , France
| | - Mahchid Bamdad
- a Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Fd INSERM, UMR 1240 Imagerie Moléculaire et Stratégies Théranostiques , Clermont Ferrand , France
| |
Collapse
|
6
|
Efferth T, Volm M. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 2017; 91:2515-2538. [DOI: 10.1007/s00204-017-1938-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|
7
|
González-Fernández C, Albentosa M, Campillo JA, Viñas L, Romero D, Franco A, Bellas J. Effect of nutritive status on Mytilus galloprovincialis pollution biomarkers: Implications for large-scale monitoring programs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:90-105. [PMID: 26277408 DOI: 10.1016/j.aquatox.2015.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/02/2015] [Accepted: 07/09/2015] [Indexed: 05/04/2023]
Abstract
Biomarkers have been extensively used in monitoring programs with the aim of assessing the biological effects of pollutants on marine organisms and determining environmental status. Data obtained from these programs are sometimes difficult to interpret due to the large amount of natural variables affecting biological processes, which could act as confounding factors on biomarker responses. The main aim of this work was to identify the effect of one of these variables, the food availability, and consequently, the mussel nutritive status, on biomarker responses. For that purpose, mussels (Mytilus galloprovincialis) were conditioned to three different food rations for 2 months in order to create three mussel nutritive statuses and afterwards, each status was exposed to three nominal concentrations of fluoranthene (FLU) for 3 weeks. A battery of biomarkers was considered in this study to cover a wide range of organism responses, both physiological (scope for growth - SFG) and biochemical (superoxide dismutase - SOD, catalase - CAT, glutathione reductase - GR, glutathione peroxidase - GPx, glutathione-S-transferase - GST and phenoloxidase - PO activities, and lipid membrane peroxidation - LPO). The results obtained, evidenced that most of the studied biomarkers (SFG, SOD, CAT, GPx, and PO) were strongly affected by mussel nutritive status, showing higher values at lower status, whereas the effect of toxicant was not always evident, masked by the nutritive status effect. This paper demonstrates that toxicants are not the only source of variability modulating pollution biomarkers, and confirms nutritive status as a major factor altering biochemical and physiological biomarkers.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain
| | - Marina Albentosa
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain.
| | - Juan A Campillo
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain
| | - Lucía Viñas
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, E-36390 Vigo, Spain
| | - Diego Romero
- Área de Toxicología, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Angeles Franco
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, E-36390 Vigo, Spain
| | - Juan Bellas
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, E-36390 Vigo, Spain
| |
Collapse
|
8
|
Mini-P-gp and P-gp Co-Expression in Brown Trout Erythrocytes: A Prospective Blood Biomarker of Aquatic Pollution. Diagnostics (Basel) 2015; 5:10-26. [PMID: 26854141 PMCID: PMC4665547 DOI: 10.3390/diagnostics5010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/19/2014] [Indexed: 12/04/2022] Open
Abstract
In aquatic organisms, such as fish, blood is continually exposed to aquatic contaminants. Multidrug Resistance (MDR) proteins are ubiquitous detoxification membrane pumps, which recognize various xenobiotics. Moreover, their expression is induced by a large class of drugs and pollutants. We have highlighted the co-expression of a mini P-gp of 75 kDa and a P-gp of 140 kDa in the primary culture of brown trout erythrocytes and in the erythrocytes of wild brown trout collected from three rivers in the Auvergne region of France. In vitro experiments showed that benzo[a]pyrene, a highly toxic pollutant model, induced the co-expression of mini-P-gp and P-gp in trout erythrocytes in a dose-dependent manner and relay type response. Similarly, in the erythrocytes of wild brown trout collected from rivers contaminated by a mixture of PAH and other multi-residues of pesticides, mini-P-gp and P-gp were able to modulate their expression, according to the nature of the pollutants. The differential and complementary responses of mini-P-gp and P-gp in trout erythrocytes suggest the existence in blood cells of a real protective network against xenobiotics/drugs. This property could be exploited to develop a blood biomarker of river pollution.
Collapse
|
9
|
Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification. Neurotoxicol Teratol 2014; 47:102-13. [PMID: 25496965 DOI: 10.1016/j.ntt.2014.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 11/23/2022]
Abstract
Methylmercury (MeHg) is a widespread environmental toxin that preferentially and adversely affects developing organisms. To investigate the impact of MeHg toxicity on the formation of the vertebrate nervous system at physiologically relevant concentrations, we designed a graded phenotype scale for evaluating Xenopus laevis embryos exposed to MeHg in solution. Embryos displayed a range of abnormalities in response to MeHg, particularly in brain development, which is influenced by both MeHg concentration and the number of embryos per ml of exposure solution. A TC50 of ~50μg/l and LC50 of ~100μg/l were found when maintaining embryos at a density of one per ml, and both increased with increasing embryo density. In situ hybridization and microarray analysis showed no significant change in expression of early neural patterning genes including sox2, en2, or delta; however a noticeable decrease was observed in the terminal neural differentiation genes GAD and xGAT, but not xVGlut. PCNA, a marker for proliferating cells, was negatively correlated with MeHg dose, with a significant reduction in cell number in the forebrain and spinal cord of exposed embryos by tadpole stages. Conversely, the number of apoptotic cells in neural regions detected by a TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay was significantly increased. These results provide evidence that disruption of embryonic neural development by MeHg may not be directly due to a loss of neural progenitor specification and gene transcription, but to a more general decrease in cell proliferation and increase in cell death throughout the developing nervous system.
Collapse
|
10
|
Miao J, Cai Y, Pan L, Li Z. Molecular cloning and characterization of a MXR-related P-glycoprotein cDNA in scallop Chlamys farreri: transcriptional response to benzo(a)pyrene, tetrabromobisphenol A and endosulfan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:136-142. [PMID: 25238485 DOI: 10.1016/j.ecoenv.2014.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
ATP-binding cassette transmembrane transporters (ABC transporters) have a potential role in xenobiotic resistance. In this study, we cloned full-length cDNA encoding an important ABC transporter, P-glycoprotein (Pgp) homologue from scallop Chlamys farreri (designated Cf-Pgp). The Cf-Pgp sequence is constituted by an ORF of 4152bp encoding for 1383 amino acids (GenBank accession no. ACL80139). The predicted molecular weight is 150.7kDa. The comparison of the deduced amino acid sequences with the Pgps from vertebrates showed high conservation of the residues and domains essential to the function of Pgp, including the ATP-binding cassettes and transmembrane domains. The mRNA expression of Cf-Pgp was detected in gill, digestive gland, mantle, hemocyte, adductor muscle and mature male and female gonad. We then utilized the real-time PCR to study expression levels of the Cf-Pgp gene in response to exposure of benzo(a)pyrene (BaP), tetrabromobisphenol A (TBBPA) and endosulfan (ES) (0.05, 0.5μg/L and 5μg/L) for 96 hours. The results showed that Cf-Pgp was significantly upregulated in the gill upon exposure to TBBPA and ES, but downregulated in the gill after exposure to BaP. These results suggested that the Cf-Pgp was a constitutive and inducible acute-phase protein that perhaps involved in the xenobiotic resistance of scallop C. farreri.
Collapse
Affiliation(s)
- Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yuefeng Cai
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
11
|
P-gp expression in brown trout erythrocytes: evidence of a detoxification mechanism in fish erythrocytes. Sci Rep 2013; 3:3422. [PMID: 24305632 PMCID: PMC3851883 DOI: 10.1038/srep03422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/15/2013] [Indexed: 01/10/2023] Open
Abstract
Blood is a site of physiological transport for a great variety of molecules, including xenobiotics. Blood cells in aquatic vertebrates, such as fish, are directly exposed to aquatic pollution. P-gp are ubiquitous “membrane detoxification proteins” implicated in the cellular efflux of various xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which may be pollutants. The existence of this P-gp detoxification system inducible by benzo [a] pyrene (BaP), a highly cytotoxic PAH, was investigated in the nucleated erythrocytes of brown trout. Western blot analysis showed the expression of a 140-kDa P-gp in trout erythrocytes. Primary cultures of erythrocytes exposed to increasing concentrations of BaP showed no evidence of cell toxicity. Yet, in the same BaP-treated erythrocytes, P-gp expression increased significantly in a dose-dependent manner. Brown trout P-gp erythrocytes act as membrane defence mechanism against the pollutant, a property that can be exploited for future biomarker development to monitor water quality.
Collapse
|
12
|
Nzoughet JK, Hamilton JTG, Botting CH, Douglas A, Devine L, Nelson J, Elliott CT. Proteomics identification of azaspiracid toxin biomarkers in blue mussels, Mytilus edulis. Mol Cell Proteomics 2009; 8:1811-22. [PMID: 19390117 PMCID: PMC2722768 DOI: 10.1074/mcp.m800561-mcp200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/04/2009] [Indexed: 01/09/2023] Open
Abstract
Azaspiracids are a class of recently discovered algae-derived shellfish toxins. Their distribution globally is on the increase with mussels being most widely implicated in azaspiracid-related food poisoning events. Evidence that these toxins were bound to proteins in contaminated mussels has been shown recently. In the present study characterization of these proteins in blue mussels, Mytilus edulis, was achieved using a range of advanced proteomics tools. Four proteins present only in the hepatopancreas of toxin-contaminated mussels sharing identity or homology with cathepsin D, superoxide dismutase, glutathione S-transferase Pi, and a bacterial flagellar protein have been characterized. Several of the proteins are known to be involved in self-defense mechanisms against xenobiotics or up-regulated in the presence of carcinogenic agents. These findings would suggest that azaspiracids should now be considered and evaluated as potential tumorigenic compounds. The presence of a bacterial protein only in contaminated mussels was an unexpected finding and requires further investigation. The proteins identified in this study should assist with development of urgently required processes for the rapid depuration of azaspiracid-contaminated shellfish. Moreover they may serve as early warning indicators of shellfish exposed to this family of toxins.
Collapse
Affiliation(s)
- Judith K Nzoughet
- Institute of Agri-food and Land Use, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|