1
|
Shah MA, Xie X, Rodina M, Stundl J, Braasch I, Šindelka R, Rzepkowska M, Saito T, Pšenička M. Sturgeon gut development: a unique yolk utilization strategy among vertebrates. Front Cell Dev Biol 2024; 12:1358702. [PMID: 38872929 PMCID: PMC11169612 DOI: 10.3389/fcell.2024.1358702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
In vertebrates, maternally supplied yolk is typically used in one of two ways: either intracellularly by endodermal cells or extracellularly via the yolk sac. This study delves into the distinctive gut development in sturgeons, which are among the most ancient extant fish groups, contrasting it with that of other vertebrates. Our observations indicate that while sturgeon endodermal cells form the archenteron (i.e., the primitive gut) dorsally, the floor of the archenteron is uniquely composed of extraembryonic yolk cells (YCs). As development progresses, during neurulation, the archenteric cavity inflates, expands laterally, and roofs a semicircle of YCs. By the pharyngula stage, the cavity fully encompasses the YC mass, which begins to be digested at the hatching stage. This suggests a notable deviation in sturgeon gut development from that in other vertebrates, as their digestive tract initiates its function by processing endogenous nutrition even before external feeding begins. Our findings highlight the evolutionary diversity of gut development strategies among vertebrates and provide new insights into the developmental biology of sturgeons.
Collapse
Affiliation(s)
- Mujahid Ali Shah
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Marek Rodina
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Jan Stundl
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Małgorzata Rzepkowska
- Department of Ichthyology and Biotechnology in Aquaculture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Taiju Saito
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
- South Ehime Fisheries Research Centre, Ehime University, Matsuyama, Japan
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| |
Collapse
|
2
|
Kamińska-Gibas T, Szczygieł J, Blasweiler A, Gajda Ł, Yilmaz E, Jurecka P, Kolek L, Ples M, Irnazarow I. New reports on iron related proteins: Molecular characterization of two ferroportin genes in common carp (Cyprinus carpio L.) and its expression pattern. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109087. [PMID: 37777096 DOI: 10.1016/j.fsi.2023.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Iron uptake, transport, and storage require the involvement of several proteins, including ferroportin (fpn), the sole known iron efflux transporter. Due to its critical function fpn has been studied, particularly in humans. Here, we characterized the ferroportin gene in common carp (Cyprinus carpio L.) and performed RNA-seq analysis to evaluate its constitutive transcription levels across different tissues. Our results indicate that C. carpio possesses two functional fpns with distinct expression patterns, highlighting the potential for functional divergence and expression differentiation among fpns in this species.
Collapse
Affiliation(s)
- Teresa Kamińska-Gibas
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Joanna Szczygieł
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Annemiek Blasweiler
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ebru Yilmaz
- Department of Aquaculture and Fisheries, Faculty of Agriculture, Aydın Adnan Menderes University, Aydin, Turkey
| | - Patrycja Jurecka
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Ludmiła Kolek
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Marek Ples
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40 Str., 41-800, Zabrze, Poland
| | - Ilgiz Irnazarow
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland.
| |
Collapse
|
3
|
Motoshima T, Nagashima A, Ota C, Oka H, Hosono K, Braasch I, Nishihara H, Kato A. Na +/Cl - cotransporter 2 is not fish-specific and is widely found in amphibians, non-avian reptiles, and select mammals. Physiol Genomics 2023; 55:113-131. [PMID: 36645671 PMCID: PMC9988527 DOI: 10.1152/physiolgenomics.00143.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Solute carrier 12 (Slc12) is a family of electroneutral cation-coupled chloride (Cl-) cotransporters. Na+/K+/2Cl- (Nkcc) and Na+/Cl- cotransporters (Ncc) belong to the Nkcc/Ncc subfamily. Human and mouse possess one gene for the Na+/Cl- cotransporter (ncc gene: slc12a3), whereas teleost fishes possess multiple ncc genes, slc12a3 (ncc1) and slc12a10 (ncc2), in addition to their species-specific paralogs. Amphibians and squamates have two ncc genes: slc12a3 (ncc1) and ncc3. However, the evolutionary relationship between slc12a10 and ncc3 remains unresolved, and the presence of slc12a10 (ncc2) in mammals has not been clarified. Synteny and phylogenetic analyses of vertebrate genome databases showed that ncc3 is the ortholog of slc12a10, and slc12a10 is present in most ray-finned fishes, coelacanths, amphibians, reptiles, and a few mammals (e.g., platypus and horse) but pseudogenized or deleted in birds, most mammals, and some ray-finned fishes (pufferfishes). This shows that slc12a10 is widely present among bony vertebrates and pseudogenized or deleted independently in multiple lineages. Notably, as compared with some fish that show varied slc12a10 tissue expression profile, spotted gar, African clawed frog, red-eared slider turtle, and horse express slc12a10 in the ovaries or premature gonads. In horse tissues, an unexpectedly large number of splicing variants for Slc12a10 have been cloned, many of which encode truncated forms of Slc12a10, suggesting that the functional constraints of horse slc12a10 are weakened, which may be in the process of becoming a pseudogene. Our results elaborate on the evolution of Nkcc/Ncc subfamily of Slc12 in vertebrates.NEW & NOTEWORTHY slc12a10 is not a fish-specific gene and is present in a few mammals (e.g., platypus and horse), non-avian reptiles, amphibians, but was pseudogenized or deleted in most mammals (e.g., human, mouse, cat, cow, and rhinoceros), birds, and some ray-finned fishes (pufferfishes).
Collapse
Affiliation(s)
- Toya Motoshima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Chihiro Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Haruka Oka
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kohei Hosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ingo Braasch
- Department of Integrative Biology, College of Natural Science, Michigan State University, East Lansing, Michigan, United States
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
4
|
Annona G, Ferran JL, De Luca P, Conte I, Postlethwait JH, D’Aniello S. Expression Pattern of nos1 in the Developing Nervous System of Ray-Finned Fish. Genes (Basel) 2022; 13:918. [PMID: 35627303 PMCID: PMC9140475 DOI: 10.3390/genes13050918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 12/04/2022] Open
Abstract
Fish have colonized nearly all aquatic niches, making them an invaluable resource to understand vertebrate adaptation and gene family evolution, including the evolution of complex neural networks and modulatory neurotransmitter pathways. Among ancient regulatory molecules, the gaseous messenger nitric oxide (NO) is involved in a wide range of biological processes. Because of its short half-life, the modulatory capability of NO is strictly related to the local activity of nitric oxide synthases (Nos), enzymes that synthesize NO from L-arginine, making the localization of Nos mRNAs a reliable indirect proxy for the location of NO action domains, targets, and effectors. Within the diversified actinopterygian nos paralogs, nos1 (alias nnos) is ubiquitously present as a single copy gene across the gnathostome lineage, making it an ideal candidate for comparative studies. To investigate variations in the NO system across ray-finned fish phylogeny, we compared nos1 expression patterns during the development of two well-established experimental teleosts (zebrafish and medaka) with an early branching holostean (spotted gar), an important evolutionary bridge between teleosts and tetrapods. Data reported here highlight both conserved expression domains and species-specific nos1 territories, confirming the ancestry of this signaling system and expanding the number of biological processes implicated in NO activities.
Collapse
Affiliation(s)
- Giovanni Annona
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Research Infrastructure for Marine Biological Resources Department (RIMAR), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain;
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Pasquale De Luca
- Research Infrastructure for Marine Biological Resources Department (RIMAR), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy;
- Department of Biology, University of Napoli Federico II, 80126 Napoli, Italy
| | | | - Salvatore D’Aniello
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
5
|
Stundl J, Soukup V, Franěk R, Pospisilova A, Psutkova V, Pšenička M, Cerny R, Bronner ME, Medeiros DM, Jandzik D. Efficient CRISPR Mutagenesis in Sturgeon Demonstrates Its Utility in Large, Slow-Maturing Vertebrates. Front Cell Dev Biol 2022; 10:750833. [PMID: 35223827 PMCID: PMC8867083 DOI: 10.3389/fcell.2022.750833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
In the last decade, the CRISPR/Cas9 bacterial virus defense system has been adapted as a user-friendly, efficient, and precise method for targeted mutagenesis in eukaryotes. Though CRISPR/Cas9 has proven effective in a diverse range of organisms, it is still most often used to create mutant lines in lab-reared genetic model systems. However, one major advantage of CRISPR/Cas9 mutagenesis over previous gene targeting approaches is that its high efficiency allows the immediate generation of near-null mosaic mutants. This feature could potentially allow genotype to be linked to phenotype in organisms with life histories that preclude the establishment of purebred genetic lines; a group that includes the vast majority of vertebrate species. Of particular interest to scholars of early vertebrate evolution are several long-lived and slow-maturing fishes that diverged from two dominant modern lineages, teleosts and tetrapods, in the Ordovician, or before. These early-diverging or "basal" vertebrates include the jawless cyclostomes, cartilaginous fishes, and various non-teleost ray-finned fishes. In addition to occupying critical phylogenetic positions, these groups possess combinations of derived and ancestral features not seen in conventional model vertebrates, and thus provide an opportunity for understanding the genetic bases of such traits. Here we report successful use of CRISPR/Cas9 mutagenesis in one such non-teleost fish, sterlet Acipenser ruthenus, a small species of sturgeon. We introduced mutations into the genes Tyrosinase, which is needed for melanin production, and Sonic hedgehog, a pleiotropic developmental regulator with diverse roles in early embryonic patterning and organogenesis. We observed disruption of both loci and the production of consistent phenotypes, including both near-null mutants' various hypomorphs. Based on these results, and previous work in lamprey and amphibians, we discuss how CRISPR/Cas9 F0 mutagenesis may be successfully adapted to other long-lived, slow-maturing aquatic vertebrates and identify the ease of obtaining and injecting eggs and/or zygotes as the main challenges.
Collapse
Affiliation(s)
- Jan Stundl
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Vladimír Soukup
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Roman Franěk
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Viktorie Psutkova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Daniel Meulemans Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado in Boulder, Boulder, CO, United States
| | - David Jandzik
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
6
|
Thompson AW, Hawkins MB, Parey E, Wcisel DJ, Ota T, Kawasaki K, Funk E, Losilla M, Fitch OE, Pan Q, Feron R, Louis A, Montfort J, Milhes M, Racicot BL, Childs KL, Fontenot Q, Ferrara A, David SR, McCune AR, Dornburg A, Yoder JA, Guiguen Y, Roest Crollius H, Berthelot C, Harris MP, Braasch I. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat Genet 2021; 53:1373-1384. [PMID: 34462605 PMCID: PMC8423624 DOI: 10.1038/s41588-021-00914-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
The bowfin (Amia calva) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central species for the genomic exploration of ray-finned fishes. Here we present a chromosome-level genome assembly for bowfin that enables gene-order analyses, settling long-debated neopterygian phylogenetic relationships. We examine chromatin accessibility and gene expression through bowfin development to investigate the evolution of immune, scale, respiratory and fin skeletal systems and identify hundreds of gene-regulatory loci conserved across vertebrates. These resources connect developmental evolution among bony fishes, further highlighting the bowfin's importance for illuminating vertebrate biology and diversity in the genomic era.
Collapse
Affiliation(s)
- Andrew W Thompson
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA
| | - M Brent Hawkins
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Elise Parey
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, NC, USA
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI (the Graduate University for Advanced Studies), Hayama, Japan
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Emily Funk
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Animal Science Department, University of California Davis, Davis, CA, USA
| | - Mauricio Losilla
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Olivia E Fitch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexandra Louis
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | | | - Marine Milhes
- GeT-PlaGe, INRAE, Genotoul, Castanet-Tolosan, France
| | - Brett L Racicot
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Quenton Fontenot
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Allyse Ferrara
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Solomon R David
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, NC, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA
- Center for Human Health and the Environment, NC State University, Raleigh, NC, USA
| | | | - Hugues Roest Crollius
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Berthelot
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Vigouroux RJ, Duroure K, Vougny J, Albadri S, Kozulin P, Herrera E, Nguyen-Ba-Charvet K, Braasch I, Suárez R, Del Bene F, Chédotal A. Bilateral visual projections exist in non-teleost bony fish and predate the emergence of tetrapods. Science 2021; 372:150-156. [PMID: 33833117 DOI: 10.1126/science.abe7790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
In most vertebrates, camera-style eyes contain retinal ganglion cell neurons that project to visual centers on both sides of the brain. However, in fish, ganglion cells were thought to innervate only the contralateral side, suggesting that bilateral visual projections appeared in tetrapods. Here we show that bilateral visual projections exist in non-teleost fishes and that the appearance of ipsilateral projections does not correlate with terrestrial transition or predatory behavior. We also report that the developmental program that specifies visual system laterality differs between fishes and mammals, as the Zic2 transcription factor, which specifies ipsilateral retinal ganglion cells in tetrapods, appears to be absent from fish ganglion cells. However, overexpression of human ZIC2 induces ipsilateral visual projections in zebrafish. Therefore, the existence of bilateral visual projections likely preceded the emergence of binocular vision in tetrapods.
Collapse
Affiliation(s)
- Robin J Vigouroux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Karine Duroure
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Juliette Vougny
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Peter Kozulin
- Queensland Brain Institute, The University of Queensland, Building 79, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Eloisa Herrera
- Instituto de Neurociencias, Av. Ramón y Cajal s/n, San Juan de Alicante, 03550 Spain
| | - Kim Nguyen-Ba-Charvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Ingo Braasch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
| | - Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, Building 79, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France.
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France.
| |
Collapse
|
8
|
Song H, Wang M, Wang Z, Liu J, Qi J, Zhang Q. Characterization of kiss2 and kissr2 genes and the regulation of kisspeptin on the HPG axis in Cynoglossus semilaevis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:731-753. [PMID: 28120214 DOI: 10.1007/s10695-016-0328-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Reproduction allows organisms to produce offspring. Animals shift from immature juveniles into mature adults and become capable of sexual reproduction during puberty, which culminates in the first spermiation and sperm hydration or ovulation. Reproduction is closely related to the precise control of the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin peptides are considered as the important regulator of HPG axis in mammalian. However, the current understanding of kisspeptin in flatfish is not comprehensive. In this study, we cloned and analyzed the kiss2 and kissr2 genes in Cynoglossus semilaevis. Interesting alternative splicing in the 5'-untranslated regions (UTR) of the Cskissr2 gene was found. The expression profiles of Cskiss2 and Cskissr2 showed relative high messenger RNA (mRNA) levels at the late gastrula stage during embryonic development, at total length = 40 mm during early gonadal differentiation, and in the brains and gonads of all investigated tissues. These results suggested that the kisspeptin system participated in embryogenesis and in the regulation of gonadal differentiation and development. Considering that the control and regulatory mechanisms of kisspeptin in the central reproductive axis are still unclear, we documented that the intramuscular injection of kisspeptin caused different sGnRH and cGnRH mRNA levels in a dose- and tissue-dependent manner. The mRNA expressions of FSH and LH were stimulated in the ovary and were inhibited in the testis under the kisspeptin treatments. These results provided foundations for understanding the roles of kisspeptin in the neuroendocrine system in fish. The manipulation of the kisspeptin system may provide new opportunities to control the gonadal development and even reproduction in fish.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengxun Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
9
|
Genome-wide identification of novel ovarian-predominant miRNAs: new insights from the medaka (Oryzias latipes). Sci Rep 2017; 7:40241. [PMID: 28071684 PMCID: PMC5223123 DOI: 10.1038/srep40241] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/05/2016] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are small, highly conserved non-coding RNAs that play important roles in the regulation of many physiological processes. However, the role of miRNAs in vertebrate oocyte formation (i.e., oogenesis) remains poorly investigated. To gain new insights into the roles of miRNAs in oogenesis, we searched for ovarian-predominant miRNAs. Using a microarray displaying 3,800 distinct miRNAs originating from different vertebrate species, we identified 66 miRNAs that are expressed predominantly in the ovary. Of the miRNAs exhibiting the highest overabundance in the ovary, 20 were selected for further analysis. Using a combination of QPCR and in silico analyses, we identified 8 novel miRNAs that are predominantly expressed in the ovary, including 2 miRNAs (miR-4785 and miR-6352) that exhibit strict ovarian expression. Of these 8 miRNAs, 7 were previously uncharacterized in fish. The strict ovarian expression of miR-4785 and miR-6352 suggests an important role in oogenesis and/or early development, possibly involving a maternal effect. Together, these results indicate that, similar to protein-coding genes, a significant number of ovarian-predominant miRNA genes are found in fish.
Collapse
|
10
|
Symonová R, Majtánová Z, Arias-Rodriguez L, Mořkovský L, Kořínková T, Cavin L, Pokorná MJ, Doležálková M, Flajšhans M, Normandeau E, Ráb P, Meyer A, Bernatchez L. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:607-619. [DOI: 10.1002/jez.b.22719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Radka Symonová
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
- Research Institute for Limnology; University of Innsbruck; Mondsee Austria
| | - Zuzana Majtánová
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas; Universidad Juárez Autónoma de Tabasco (UJAT); Villahermosa Tabasco México
| | - Libor Mořkovský
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Tereza Kořínková
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Lionel Cavin
- Muséum d'Histoire Naturelle; Geneva 6 Switzerland
| | - Martina Johnson Pokorná
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Ecology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Marie Doležálková
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Martin Flajšhans
- Faculty of Fisheries and Protection of Waters; South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses; University of South Bohemia in České Budějovice; Vodňany Czech Republic
| | - Eric Normandeau
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand; Avenue de la Médecine Quebec City; Canada
| | - Petr Ráb
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Konstanz Germany
| | - Louis Bernatchez
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand; Avenue de la Médecine Quebec City; Canada
| |
Collapse
|
11
|
Pasquier J, Cabau C, Nguyen T, Jouanno E, Severac D, Braasch I, Journot L, Pontarotti P, Klopp C, Postlethwait JH, Guiguen Y, Bobe J. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics 2016; 17:368. [PMID: 27189481 PMCID: PMC4870732 DOI: 10.1186/s12864-016-2709-z] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/05/2016] [Indexed: 12/25/2022] Open
Abstract
With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.
Collapse
Affiliation(s)
- Jeremy Pasquier
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Cédric Cabau
- INRA, SIGENAE, GenPhySE, F-31326, Castanet-Tolosan, France
| | - Thaovi Nguyen
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Elodie Jouanno
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Dany Severac
- CNRS, MGX-Montpellier GenomiX, Montpellier, France
| | - Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, 97403-1254, OR, USA.,Department of Integrative Biology, Michigan State University, East Lansing, 48824, MI, USA
| | | | - Pierre Pontarotti
- Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR7373, FR 4213 - FR, Eccorev 3098, équipe EBM, 13331, Marseille, France
| | | | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, 97403-1254, OR, USA
| | - Yann Guiguen
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Julien Bobe
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France.
| |
Collapse
|
12
|
Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face. PLoS Genet 2016; 12:e1005967. [PMID: 27058748 PMCID: PMC4825933 DOI: 10.1371/journal.pgen.1005967] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/09/2016] [Indexed: 11/25/2022] Open
Abstract
The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper face. The exquisite functions of the vertebrate face require the precise formation of its underlying bones. Remarkably, many of the genes required to shape the facial skeleton are the same from fish to man. In this study, we use the powerful zebrafish system to understand how the skeletal components of the face acquire different shapes during development. To do so, we analyze a series of mutants that disrupt patterning of the facial skeleton, and then assess how the genes affected in these mutants control cell fate in skeletal progenitor cells. From these genetic studies, we found that several pathways converge to control when and where progenitor cells commit to a cartilage fate, thus controlling the size and shape of cartilage templates for the later-arising bones. Our work thus reveals how regulating the timing of when progenitor cells make skeleton helps to shape the bones of the zebrafish face. As mutations in many of the genes studied are implicated in human craniofacial defects, differences in the timing of progenitor cell differentiation may also explain the wonderful diversity of human faces.
Collapse
|
13
|
Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, Amores A, Desvignes T, Batzel P, Catchen J, Berlin AM, Campbell MS, Barrell D, Martin KJ, Mulley JF, Ravi V, Lee AP, Nakamura T, Chalopin D, Fan S, Wcisel D, Cañestro C, Sydes J, Beaudry FEG, Sun Y, Hertel J, Beam MJ, Fasold M, Ishiyama M, Johnson J, Kehr S, Lara M, Letaw JH, Litman GW, Litman RT, Mikami M, Ota T, Saha NR, Williams L, Stadler PF, Wang H, Taylor JS, Fontenot Q, Ferrara A, Searle SMJ, Aken B, Yandell M, Schneider I, Yoder JA, Volff JN, Meyer A, Amemiya CT, Venkatesh B, Holland PWH, Guiguen Y, Bobe J, Shubin NH, Di Palma F, Alföldi J, Lindblad-Toh K, Postlethwait JH. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet 2016; 48:427-37. [PMID: 26950095 PMCID: PMC4817229 DOI: 10.1038/ng.3526] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/12/2016] [Indexed: 12/16/2022]
Abstract
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Andrew R Gehrke
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Jeremy Pasquier
- Institut National de la Recherche Agronomique (INRA), UR1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Julian Catchen
- Department of Animal Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Aaron M Berlin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael S Campbell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Daniel Barrell
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Kyle J Martin
- Department of Zoology, University of Oxford, Oxford, UK
| | - John F Mulley
- School of Biological Sciences, Bangor University, Bangor, UK
| | - Vydianathan Ravi
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Alison P Lee
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Tetsuya Nakamura
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Shaohua Fan
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dustin Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, USA
| | - Cristian Cañestro
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Felix E G Beaudry
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Yi Sun
- Center for Circadian Clocks, Soochow University, Suzhou, China
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Jana Hertel
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Michael J Beam
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Mario Fasold
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Mikio Ishiyama
- Department of Dental Hygiene, Nippon Dental University College at Niigata, Niigata, Japan
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steffi Kehr
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Marcia Lara
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - John H Letaw
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, Florida, USA
| | - Ronda T Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, Florida, USA
| | - Masato Mikami
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI (Graduate University for Advanced Studies), Hayama, Japan
| | - Nil Ratan Saha
- Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Louise Williams
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, China
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - John S Taylor
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Quenton Fontenot
- Department of Biological Sciences, Nicholls State University, Thibodaux, Louisiana, USA
| | - Allyse Ferrara
- Department of Biological Sciences, Nicholls State University, Thibodaux, Louisiana, USA
| | - Stephen M J Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Bronwen Aken
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Brazil
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
- International Max Planck Research School for Organismal Biology, University of Konstanz, Konstanz, Germany
| | - Chris T Amemiya
- Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Yann Guiguen
- Institut National de la Recherche Agronomique (INRA), UR1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Julien Bobe
- Institut National de la Recherche Agronomique (INRA), UR1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Neil H Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | | | - Jessica Alföldi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
14
|
Zapilko V, Korsching SI. Tetrapod V1R-like ora genes in an early-diverging ray-finned fish species: the canonical six ora gene repertoire of teleost fish resulted from gene loss in a larger ancestral repertoire. BMC Genomics 2016; 17:83. [PMID: 26818853 PMCID: PMC4728799 DOI: 10.1186/s12864-016-2399-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemical senses serve a multitude of essential functions across the animal kingdom. Vertebrates employ four GPCR families to detect odors, among them the v1r/ora gene family. The V1R family is known to evolve rapidly in the lobe-finned lineage giving rise to tetrapods, but the homologous ORA family consists of just six highly conserved genes in teleost fish, with direct orthologs in the lobe-finned fish coelacanth. Thus, the teleost repertoire of six canonical ora genes was assumed to be the ancestral feature before the divergence of ray-finned and lobe-finned fish. So far, this hypothesis has not been tested with earlier diverging ray-finned fish. RESULTS We have newly identified the complete ora gene repertoires of five teleost species, and of spotted gar, a basal ray-finned fish, using thorough data mining and extensive phylogenetic analysis. The genomes of eight further teleost species were re-analyzed for their ORA repertoires. We report that direct orthologs of the six canonical ora genes (ora1-6) were present in all newly analyzed species, with faithfully preserved exon/intron structure and mostly preserved genomic arrangement in symmetric pairs for ora1-4. In four teleost species including medaka and cave fish we observe species-specific gene duplication events. Thus, the ora gene repertoire in teleost fish is not quite as strictly conserved as previously assumed. In fact, the examination of non-synonymous vs. synonymous substitution rates (dN/dS) shows pronounced negative selection in five of the six ora genes, but also rare occurrence of positive selection in ora3 and ora6. Surprisingly, spotted gar possesses beyond the six canonical genes three additional genes, ora7-8b, orthologous to coelacanth genes v1r07-10. No orthologs for these genes were found in teleosts and cartilaginous fish. CONCLUSIONS Early diverging ray-finned fish such as the spotted gar possess several v1r-like genes previously assumed to be restricted to the lobe-finned lineage, but now found to be already present in the most recent common ancestor of lobe- and ray-finned fish. Thus, the presence of just six canonical ora genes in many teleost species is not the ancestral feature of the ray-finned lineage, but caused by loss of two ancestral genes in teleosts.
Collapse
Affiliation(s)
- Veronika Zapilko
- Institute of Genetics, University of Cologne, 50674, Cologne, Germany
| | | |
Collapse
|
15
|
Abstract
The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart.
Collapse
Affiliation(s)
- Matti Vornanen
- a Department of Biology , University of Eastern Finland , Joensuu , Finland
| | - Minna Hassinen
- a Department of Biology , University of Eastern Finland , Joensuu , Finland
| |
Collapse
|
16
|
Zuniga A. Next generation limb development and evolution: old questions, new perspectives. Development 2015; 142:3810-20. [DOI: 10.1242/dev.125757] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular analysis of limb bud development in vertebrates continues to fuel our understanding of the gene regulatory networks that orchestrate the patterning, proliferation and differentiation of embryonic progenitor cells. In recent years, systems biology approaches have moved our understanding of the molecular control of limb organogenesis to the next level by incorporating next generation ‘omics’ approaches, analyses of chromatin architecture, enhancer-promoter interactions and gene network simulations based on quantitative datasets into experimental analyses. This Review focuses on the insights these studies have given into the gene regulatory networks that govern limb development and into the fin-to-limb transition and digit reductions that occurred during the evolutionary diversification of tetrapod limbs.
Collapse
Affiliation(s)
- Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel CH-4058, Switzerland
| |
Collapse
|
17
|
Braasch I, Schartl M. Evolution of endothelin receptors in vertebrates. Gen Comp Endocrinol 2014; 209:21-34. [PMID: 25010382 DOI: 10.1016/j.ygcen.2014.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/07/2014] [Accepted: 06/26/2014] [Indexed: 02/03/2023]
Abstract
Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only present among vertebrates, including the lineages of jawless vertebrates (lampreys and hagfishes), cartilaginous vertebrates (sharks, rays, and chimaeras), and bony vertebrates (ray-finned fishes and lobe-finned vertebrates including tetrapods). A bona fide endothelin system is thus a vertebrate-specific innovation with important roles for regulating the cardiovascular system, renal and pulmonary processes, as well as for the development of the vertebrate-specific neural crest cell population and its derivatives. Expectedly, dysregulation of endothelin receptors and the endothelin system leads to a multitude of human diseases. Despite the importance of different types of endothelin receptors for vertebrate development and physiology, current knowledge on endothelin ligand-receptor interactions, on the expression of endothelin receptors and their ligands, and on the functional roles of the endothelin system for embryonic development and in adult vertebrates is very much biased towards amniote vertebrates. Recent analyses from a variety of vertebrate lineages, however, have shown that the endothelin system in lineages such as teleost fish and lampreys is more diverse and is divergent from the mammalian endothelin system. This diversity is mainly based on differential evolution of numerous endothelin system components among vertebrate lineages generated by two rounds of whole genome duplication (three in teleosts) during vertebrate evolution. Here we review current understanding of the evolutionary history of the endothelin receptor family in vertebrates supplemented with surveys on the endothelin receptor gene complement of newly available genome assemblies from phylogenetically informative taxa. Our assessment further highlights the diversity of the vertebrate endothelin system and calls for detailed functional and pharmacological analyses of the endothelin system beyond tetrapods.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA.
| | - Manfred Schartl
- Department of Physiological Chemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Comprehensive Cancer Center, University Clinic Würzburg, Josef Schneider Straße 6, 97080 Würzburg, Germany.
| |
Collapse
|
18
|
Abstract
Sex determination can be robustly genetic, strongly environmental, or genetic subject to environmental perturbation. The genetic basis of sex determination is unknown for zebrafish (Danio rerio), a model for development and human health. We used RAD-tag population genomics to identify sex-linked polymorphisms. After verifying this "RAD-sex" method on medaka (Oryzias latipes), we studied two domesticated zebrafish strains (AB and TU), two natural laboratory strains (WIK and EKW), and two recent isolates from nature (NA and CB). All four natural strains had a single sex-linked region at the right tip of chromosome 4, enabling sex genotyping by PCR. Genotypes for the single nucleotide polymorphism (SNP) with the strongest statistical association to sex suggested that wild zebrafish have WZ/ZZ sex chromosomes. In natural strains, "male genotypes" became males and some "female genotypes" also became males, suggesting that the environment or genetic background can cause female-to-male sex reversal. Surprisingly, TU and AB lacked detectable sex-linked loci. Phylogenomics rooted on D. nigrofasciatus verified that all strains are monophyletic. Because AB and TU branched as a monophyletic clade, we could not rule out shared loss of the wild sex locus in a common ancestor despite their independent domestication. Mitochondrial DNA sequences showed that investigated strains represent only one of the three identified zebrafish haplogroups. Results suggest that zebrafish in nature possess a WZ/ZZ sex-determination mechanism with a major determinant lying near the right telomere of chromosome 4 that was modified during domestication. Strains providing the zebrafish reference genome lack key components of the natural sex-determination system but may have evolved variant sex-determining mechanisms during two decades in laboratory culture.
Collapse
|
19
|
Braasch I, Peterson SM, Desvignes T, McCluskey BM, Batzel P, Postlethwait JH. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:316-41. [PMID: 25111899 DOI: 10.1002/jez.b.22589] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 01/08/2023]
Abstract
Many fields of biology--including vertebrate Evo-Devo research--are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this "genomic tsunami." Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies--for which we introduce the term "chromonome"--should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish, and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | | | | | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
20
|
Fieber LA. Aquatic animal models of human disease: selected papers from the 6th conference. Comp Biochem Physiol C Toxicol Pharmacol 2014; 163:1-2. [PMID: 24667762 DOI: 10.1016/j.cbpc.2014.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lynne A Fieber
- University of Miami Rosenstiel School, Division of Marine Biology and Fisheries, United States.
| |
Collapse
|