1
|
Datta M, Majumder R, Banerjee A, Bandyopadhyay D, Chattopadhyay A. Melatonin protects against diclofenac induced oxidative stress mediated myocardial toxicity in rats: A mechanistic insight. Food Chem Toxicol 2024; 190:114813. [PMID: 38876380 DOI: 10.1016/j.fct.2024.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Diclofenac, a traditional non-steroidal anti-inflammatory drug, is commonly used for treating chronic pain and inflammation. Recently, a number of articles have highlighted the toxicities associated with diclofenac. The current study explores the molecular mechanism of diclofenac induced cardiac toxicity following oxidative stress. Diclofenac inhibits catalase, disrupts the redox balance in cardiac tissue, accelerates the monoamine oxidase induced hydroperoxide generation and eventually inhibits crucial mitochondrial enzyme, viz., aldehyde dehydrogenase, thereby causing myocardial injury. Melatonin, the pineal indoleamine with high antioxidative efficacy, is well known for its cardio-protective properties and its dietary consumption has profound impact on cardiac health. The present study demonstrates perhaps for the first time, that apart from ameliorating oxidative load in the cardiac tissue, melatonin also attenuates the inhibition of catalase and aldehyde dehydrogenase, and prevents stress mediated stimulation of monoamine oxidase. Moreover, favourable binding of diclofenac with melatonin may protect the myocardium from the deleterious effects of this drug. The results indicate toward a novel mechanism of protection by melatonin, having future therapeutic relevance.
Collapse
Affiliation(s)
- Madhuri Datta
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Adrita Banerjee
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India.
| |
Collapse
|
2
|
Gallego-Ríos SE, Peñuela GA, Martínez-López E. Updating the use of biochemical biomarkers in fish for the evaluation of alterations produced by pharmaceutical products. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103756. [PMID: 34662733 DOI: 10.1016/j.etap.2021.103756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The evaluation of toxic effects in stressful environmental conditions can be determined through the imbalance between exogenous factors (environmental contaminants) and enzymatic and non-enzymatic defenses in biological systems. The use of fish for the identification of alterations in biochemical biomarkers provides a comprehensive vision of the effects that pharmaceutical products cause in the aquatic ecosystem, as they are organisms with high sensitivity to contaminants, filtering capacity, and potential for environmental toxicology studies. A wide range of pharmaceuticals can stimulate or alter a variety of biochemical mechanisms, such as oxidative damage to membrane lipids, proteins, and changes in antioxidant enzymes. This review includes a summary of knowledge of the last 20 years, in the understanding of the different biochemical biomarkers generated by exposure to pharmaceuticals in fish, which include different categories of pharmaceutical products: NSAIDs, analgesics, antibiotics, anticonvulsants, antidepressants, hormones, lipid regulators and mixtures. This review serves as a tool in the design of studies for the evaluation of the effects of pharmaceutical products, taking into account the most useful biomarkers, type of matrix, enzyme alterations, all taking the pharmaceutical group of interest.
Collapse
Affiliation(s)
- Sara E Gallego-Ríos
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (U de A), Calle 70 No. 52-21, Medellin, Colombia.
| | - Gustavo A Peñuela
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (U de A), Calle 70 No. 52-21, Medellin, Colombia
| | - Emma Martínez-López
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain
| |
Collapse
|
3
|
Barcelos RP, Lima FD, Courtes AA, da Silva IK, Vargas JE, Royes LFF, Trindade C, González-Gallego J, Soares FAA. Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses. Antioxidants (Basel) 2021; 10:antiox10081246. [PMID: 34439494 PMCID: PMC8389246 DOI: 10.3390/antiox10081246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Recovery in athletes is hampered by soreness and fatigue. Consequently, nonsteroidal anti-inflammatory drugs are used as an effective strategy to maintain high performance. However, impact of these drugs on adaptations induced by training remains unknown. This study assessed the effects of diclofenac administration (10 mg/kg/day) on rats subjected to an exhaustive test, after six weeks of swimming training. Over the course of 10 days, three repeated swimming bouts were performed, and diclofenac or saline were administered once a day. Trained animals exhibited higher muscle citrate synthase and lower plasma creatinine kinase activities as compared to sedentary animals, wherein diclofenac had no impact. Training increased time to exhaustion, however, diclofenac blunted this effect. It also impaired the increase in plasma and liver interleukin-6 levels. The trained group exhibited augmented catalase, glutathione peroxidase, and glutathione reductase activities, and a higher ratio of reduced-to-oxidized glutathione in the liver. However, diclofenac treatment blunted all these effects. Systems biology analysis revealed a close relationship between diclofenac and liver catalase. These results confirmed that regular exercise induces inflammation and oxidative stress, which are crucial for tissue adaptations. Altogether, diclofenac treatment might be helpful in preventing pain and inflammation, but its use severely affects performance and tissue adaptation.
Collapse
Affiliation(s)
- Rômulo Pillon Barcelos
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil; (A.A.C.); (I.K.d.S.); (F.A.A.S.)
- Programa de Pós-Graduação em Bioexperimentação (PPGBioexp), Universidade de Passo Fundo (UPF), BR 285, Passo Fundo 99052-900, Brazil
- Correspondence: (R.P.B.); (C.T.)
| | - Frederico Diniz Lima
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil; (F.D.L.); (L.F.F.R.)
| | - Aline Alves Courtes
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil; (A.A.C.); (I.K.d.S.); (F.A.A.S.)
| | - Ingrid Kich da Silva
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil; (A.A.C.); (I.K.d.S.); (F.A.A.S.)
| | - Jose Eduardo Vargas
- Laborátorio de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo 99052-900, Brazil;
- Hospital de Clínicas de Porto Alegre, Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Luiz Fernando Freire Royes
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil; (F.D.L.); (L.F.F.R.)
| | - Cristiano Trindade
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence: (R.P.B.); (C.T.)
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071 León, Spain;
| | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil; (A.A.C.); (I.K.d.S.); (F.A.A.S.)
| |
Collapse
|
4
|
Pinheiro JPS, Windsor FM, Wilson RW, Tyler CR. Global variation in freshwater physico-chemistry and its influence on chemical toxicity in aquatic wildlife. Biol Rev Camb Philos Soc 2021; 96:1528-1546. [PMID: 33942490 DOI: 10.1111/brv.12711] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
Chemical pollution is one of the major threats to global freshwater biodiversity and will be exacerbated through changes in temperature and rainfall patterns, acid-base chemistry, and reduced freshwater availability due to climate change. In this review we show how physico-chemical features of natural fresh waters, including pH, temperature, oxygen, carbon dioxide, divalent cations, anions, carbonate alkalinity, salinity and dissolved organic matter, can affect the environmental risk to aquatic wildlife of pollutant chemicals. We evidence how these features of freshwater physico-chemistry directly and/or indirectly affect the solubility, speciation, bioavailability and uptake of chemicals [including via alterations in the trans-epithelial electric potential (TEP) across the gills or skin] as well as the internal physiology/biochemistry of the organisms, and hence ultimately toxicity. We also show how toxicity can vary with species and ontogeny. We use a new database of global freshwater chemistry (GLORICH) to demonstrate the huge variability (often >1000-fold) for these physico-chemical variables in natural fresh waters, and hence their importance to ecotoxicology. We emphasise that a better understanding of chemical toxicity and more accurate environmental risk assessment requires greater consideration of the natural water physico-chemistry in which the organisms we seek to protect live.
Collapse
Affiliation(s)
- João Paulo S Pinheiro
- Instituto de Biociências, Universidade de São Paulo, Matão Street, 14 Lane, Number 101, Room 220, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - Fredric M Windsor
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, Tyne and Wear, NE1 7RU, U.K
| | - Rod W Wilson
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, U.K
| | - Charles R Tyler
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, U.K
| |
Collapse
|
5
|
Lammel T, Thit A, Cui X, Mouneyrac C, Baun A, Valsami-Jones E, Sturve J, Selck H. Dietary uptake and effects of copper in Sticklebacks at environmentally relevant exposures utilizing stable isotope-labeled 65CuCl 2 and 65CuO NPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143779. [PMID: 33279190 DOI: 10.1016/j.scitotenv.2020.143779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) accumulating in sediment can be taken up by invertebrates that serve as prey for fish. Thus, it is likely that the latter are exposed to CuO NPs via the gut. However, to this day it is unknown if CuO NPs can be taken up via the gastrointestinal tract and if and in which tissues/organs they accumulate. To address this knowledge gap, we synthesized CuO NPs enriched in the stable isotope 65Cu and incorporated them at low concentration (5 μg 65Cu g-1 ww food) into a practical diet prepared from worm homogenate, which was then fed to Three-spined Stickleback (Gasterosteus aculeatus) for 16 days. For comparison, fish were exposed to a diet spiked with a 65CuCl2 solution. Background Cu and newly taken up 65Cu in fish tissues/organs including gill, stomach, intestine, liver, spleen, gonad and carcass and feces were quantified by ICP-MS. In addition, expression levels of genes encoding for proteins related to Cu uptake, detoxification and toxicity (ctr-1, gcl, gr, gpx, sod-1, cat, mta and zo-1) were measured in selected tissues using RT-qPCR. The obtained results showed that feces of fish fed 65CuO NP-spiked diet contained important amounts of 65Cu. Furthermore, there was no significant accumulation of 65Cu in any of the analyzed internal organs, though 65Cu levels were slightly elevated in liver. No significant modulation in gene expression was measured in fish exposed to 65CuO NP-spiked diet, except for metallothionein, which was significantly upregulated in intestinal tissue compared to control fish. Altogether, our results suggests that dietary absorption efficiency of CuO NPs, their uptake across the gastrointestinal barrier into the organism, and effects on Cu-related genes is limited at low, environmentally relevant exposure doses (0.2 μg 65Cu -1 fish ww day-1).
Collapse
Affiliation(s)
- Tobias Lammel
- Department of Science and Environment, Roskilde University, Denmark; Department of Biological and Environmental Sciences, University of Gothenburg, Sweden.
| | - Amalie Thit
- Department of Science and Environment, Roskilde University, Denmark
| | - Xianjin Cui
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | | | - Anders Baun
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, Denmark
| |
Collapse
|
6
|
Prokkola JM, Nikinmaa M. Circadian rhythms and environmental disturbances – underexplored interactions. J Exp Biol 2018; 221:221/16/jeb179267. [DOI: 10.1242/jeb.179267] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT
Biological rhythms control the life of virtually all organisms, impacting numerous aspects ranging from subcellular processes to behaviour. Many studies have shown that changes in abiotic environmental conditions can disturb or entrain circadian (∼24 h) rhythms. These expected changes are so large that they could impose risks to the long-term viability of populations. Climate change is a major global stressor affecting the fitness of animals, partially because it challenges the adaptive associations between endogenous clocks and temperature – consequently, one can posit that a large-scale natural experiment on the plasticity of rhythm–temperature interactions is underway. Further risks are posed by chemical pollution and the depletion of oxygen levels in aquatic environments. Here, we focused our attention on fish, which are at heightened risk of being affected by human influence and are adapted to diverse environments showing predictable changes in light conditions, oxygen saturation and temperature. The examined literature to date suggests an abundance of mechanisms that can lead to interactions between responses to hypoxia, pollutants or pathogens and regulation of endogenous rhythms, but also reveals gaps in our understanding of the plasticity of endogenous rhythms in fish and in how these interactions may be disturbed by human influence and affect natural populations. Here, we summarize research on the molecular mechanisms behind environment–clock interactions as they relate to oxygen variability, temperature and responses to pollutants, and propose ways to address these interactions more conclusively in future studies.
Collapse
Affiliation(s)
- Jenni M. Prokkola
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
7
|
Fitzgerald JA, Katsiadaki I, Santos EM. Contrasting effects of hypoxia on copper toxicity during development in the three-spined stickleback (Gasterosteus aculeatus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:433-443. [PMID: 28017364 DOI: 10.1016/j.envpol.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
Hypoxia is a global problem in aquatic systems and often co-occurs with pollutants. Despite this, little is known about the combined effects of these stressors on aquatic organisms. The objective of this study was to investigate the combined effects of hypoxia and copper, a toxic metal widespread in the aquatic environment. We used the three-spined stickleback (Gasterosteus aculeatus) as a model because of its environmental relevance and amenability for environmental toxicology studies. We focused on embryonic development as this is considered to be a sensitive life stage to environmental pollution. We first investigated the effects of hypoxia alone on stickleback development to generate the information required to design subsequent studies. Our data showed that exposure to low oxygen concentrations (24.7 ± 0.9% air saturation; AS) resulted in strong developmental delays and increased mortalities, whereas a small decrease in oxygen (75.0 ± 0.5%AS) resulted in premature hatching. Stickleback embryos were then exposed to a range of copper concentrations under hypoxia (56.1 ± 0.2%AS) or normoxia (97.6 ± 0.1%AS), continuously, from fertilisation to free swimming larvae. Hypoxia caused significant changes in copper toxicity throughout embryonic development. Prior to hatching, hypoxia suppressed the occurrence of mortalities, but after hatching hypoxia significantly increased copper toxicity. Interestingly, when exposures were conducted only after hatching, the onset of copper-induced mortalities was delayed under hypoxia compared to normoxia, but after 48 h, copper was more toxic to hatched embryos under hypoxia. This is the second species for which the protective effect of hypoxia on copper toxicity prior to hatching, followed by its exacerbating effect after hatching is demonstrated, suggesting the hypothesis that this pattern may be common for teleost species. Our research highlights the importance of considering the interactions between multiple stressors, as understanding these interactions is essential to facilitate the accurate prediction of the consequences of exposure to complex stressors in a rapidly changing environment.
Collapse
Affiliation(s)
- Jennifer A Fitzgerald
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK; Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK.
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Eduarda M Santos
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
8
|
Bickley LK, van Aerle R, Brown AR, Hargreaves A, Huby R, Cammack V, Jackson R, Santos EM, Tyler CR. Bioavailability and Kidney Responses to Diclofenac in the Fathead Minnow (Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1764-1774. [PMID: 28068076 DOI: 10.1021/acs.est.6b05079] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Diclofenac is one of the most widely prescribed nonsteroidal anti-inflammatory drugs worldwide. It is frequently detected in surface waters; however, whether this pharmaceutical poses a risk to aquatic organisms is debated. Here we quantified the uptake of diclofenac by the fathead minnow (Pimephales promelas) following aqueous exposure (0.2-25.0 μg L-1) for 21 days, and evaluated the tissue and biomolecular responses in the kidney. Diclofenac accumulated in a concentration- and time-dependent manner in the plasma of exposed fish. The highest plasma concentration observed (for fish exposed to 25 μg L-1 diclofenac) was within the therapeutic range for humans. There was a strong positive correlation between exposure concentration and the number of developing nephrons observed in the posterior kidney. Diclofenac was not found to modulate the expression of genes in the kidney associated with its primary mode of action in mammals (prostaglandin-endoperoxide synthases) but modulated genes associated with kidney repair and regeneration. There were no significant adverse effects following 21 days exposure to concentrations typical of surface waters. The combination of diclofenac's uptake potential, effects on kidney nephrons and relatively small safety margin for some surface waters may warrant a longer term chronic health effects analysis for diclofenac in fish.
Collapse
Affiliation(s)
- Lisa K Bickley
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| | - Ronny van Aerle
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, U.K
| | - A Ross Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| | - Adam Hargreaves
- AstraZeneca Drug Safety and Metabolism, Alderley Park, Macclesfield, Cheshire SK10 4TF, U.K
- PathCelerate Ltd. The BioHub at Alderley Park, Alderley Edge, Cheshire SK10 4TG, U.K
| | - Russell Huby
- Bioscript, St Peter's Institute , Macclesfield, Cheshire SK11 7HS, U.K
| | - Victoria Cammack
- AstraZeneca Global Environment, Alderley Park, Macclesfield, Cheshire SK10 4TF, U.K
| | - Richard Jackson
- AstraZeneca Drug Safety and Metabolism, Alderley Park, Macclesfield, Cheshire SK10 4TF, U.K
- Institute of Psychiatry, Psychology and Neuroscience, King's College London , De Crespigny Park, Box 63, SE5 8AF, London, U.K
| | - Eduarda M Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| |
Collapse
|