1
|
Mohanty B. Pesticides exposure and compromised fitness in wild birds: Focusing on the reproductive endocrine disruption. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105800. [PMID: 38458691 DOI: 10.1016/j.pestbp.2024.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Exposure of pesticides to wildlife species, especially on the aspect of endocrine disruption is of great concern. Wildlife species are more at risk to harmful exposures to the pesticides in their natural habitat through diet and several other means. Species at a higher tropic level in the food chain are more susceptible to the deleterious effects due to sequential biomagnifications of the pesticides/metabolites. Pesticides directly affect fitness of the species in the wild causing reproductive endocrine disruption impairing the hormones of the gonads and thyroid glands as reproduction is under the influence of cross regulations of these hormones. This review presents a comprehensive compilation of important literatures on the impact of the current use pesticides in disruption of both the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid axes particularly in birds addressing impacts on the reproductive impairments and overall fitness. In addition to the epidemiological studies, laboratory investigations those provide supportive evidences of the probable mechanisms of disruption in the wild also have been incorporated in this review. To accurately predict the endocrine-disruption of the pesticides as well as to delineate the risk associated with potential cumulative effects, studies are to be more focused on the environmentally realistic exposure dose, mixture pesticide exposures and transgenerational effects. In addition, strategic screening/appropriate methodologies have to be developed to reveal the endocrine disruption potential of the contemporary use pesticides. Demand for adequate quantitative structure-activity relationships and insilico molecular docking studies for timely validation have been highlighted.
Collapse
|
2
|
Carbamate Pesticides: Shedding Light on Their Impact on the Male Reproductive System. Int J Mol Sci 2022; 23:ijms23158206. [PMID: 35897782 PMCID: PMC9332211 DOI: 10.3390/ijms23158206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Carbamates are widely used and known around the world as pesticides in spite of also having medical applications. This class of chemicals is classified as acetylcholinesterase inhibitors, blocking acetylcholine hydrolyzation in a reversible manner. Their lack of species selectivity and their reported high toxicity can induce, upon exposure, adverse outcomes in male fertility that may lead to infertility. In addition, they are also considered endocrine-disrupting chemicals and can interfere with the hypothalamic–pituitary–testicular axis, essential for the normal function of the male reproductive system, thus being able to provoke male reproductive dysfunctions. Although the molecular mechanisms are not fully understood, various signaling pathways, such as those mediated by acetylcholine or kisspeptin, are affected by exposure to carbamates, thus compromising steroidogenesis and spermatogenesis. Over the last decades, several studies, both in vitro and in vivo, have reported a myriad of negative effects of carbamates on the male reproductive system. In this review, an up-to-date overview of the impact of carbamates on the male reproductive system is discussed, with an emphasis on the role of these compounds on acetylcholine regulation and the male endocrine system.
Collapse
|
3
|
Wang B, Mechaly AS, Somoza GM. Overview and New Insights Into the Diversity, Evolution, Role, and Regulation of Kisspeptins and Their Receptors in Teleost Fish. Front Endocrinol (Lausanne) 2022; 13:862614. [PMID: 35392133 PMCID: PMC8982144 DOI: 10.3389/fendo.2022.862614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
In the last two decades, kisspeptin (Kiss) has been identified as an important player in the regulation of reproduction and other physiological functions in vertebrates, including several fish species. To date, two ligands (Kiss1, Kiss2) and three kisspeptin receptors (Kissr1, Kissr2, Kissr3) have been identified in teleosts, likely due to whole-genome duplication and loss of genes that occurred early in teleost evolution. Recent results in zebrafish and medaka mutants have challenged the notion that the kisspeptin system is essential for reproduction in fish, in marked contrast to the situation in mammals. In this context, this review focuses on the role of kisspeptins at three levels of the reproductive, brain-pituitary-gonadal (BPG) axis in fish. In addition, this review compiled information on factors controlling the Kiss/Kissr system, such as photoperiod, temperature, nutritional status, sex steroids, neuropeptides, and others. In this article, we summarize the available information on the molecular diversity and evolution, tissue expression and neuroanatomical distribution, functional significance, signaling pathways, and gene regulation of Kiss and Kissr in teleost fishes. Of particular note are recent advances in understanding flatfish kisspeptin systems, which require further study to reveal their structural and functional diversity.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Alejandro S. Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| |
Collapse
|
4
|
Xing L, Sun W, Sun X, Peng J, Li Z, Zhu P, Zheng X. Semicarbazide Accumulation, Distribution and Chemical Forms in Scallop ( Chlamys farreri) after Seawater Exposure. Animals (Basel) 2021; 11:ani11061500. [PMID: 34064266 PMCID: PMC8224293 DOI: 10.3390/ani11061500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Semicarbazide is considered the characteristic metabolite of nitrofurazone and it is often used as a marker to monitor the illegal use of nitrofurazone in foods. Recent studies have indicated that semicarbazide pollution can be introduced in many ways and this compound is a newly recognized pollutant type in the environment that accumulates in aquatic organisms throughout the food chain. Scallops are the third most consumed shellfish in China. We therefore studied the accumulation, chemical forms, and distribution of semicarbazide in scallop tissues. Semicarbazide added to tank seawater resulted in its accumulation in both free and tissue-bound forms and the levels varied according to tissue and were present in all tissues examined. The levels were highest in viscera and the lowest in muscle. The levels of semicarbazide in the environment and in cultured shellfish should be monitored to ensure food quality and safety and human health. Abstract Semicarbazide is a newly recognized marine pollutant and has the potential to threaten marine shellfish, the ecological equilibrium and human health. In this study, we examined the accumulation, distribution, and chemical forms of semicarbazide in scallop tissues after exposure to 10, 100, and 1000 μg/L for 30 d at 10 °C. We found a positive correlation between semicarbazide residues in the scallops and the exposure concentration (p < 0.01). Semicarbazide existed primarily in free form in all tissues while bound semicarbazide ranged from 12.1 to 32.7% and was tissue-dependent. The time for semicarbazide to reach steady-state enrichment was 25 days and the highest levels were found in the disgestive gland, followed by gills while levels in gonads and mantle were similar and were lowest in adductor muscle. The bioconcentration factor (BCF) of semicarbazide at low exposure concentrations was higher than that at high exposure concentrations. These results indicated that the scallop can uptake semicarbazide from seawater and this affects the quality and safety of these types of products when used as a food source.
Collapse
Affiliation(s)
- Lihong Xing
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Weihong Sun
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (W.S.); (Z.L.)
| | - Xiaojie Sun
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhaoxin Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (W.S.); (Z.L.)
| | - Panpan Zhu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuying Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; (L.X.); (X.S.); (J.P.); (P.Z.); (X.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Yang H, Jiang X, Wang Y, Li C, Hang L, Huang W. Determination of semicarbazide residue in human urine samples using liquid chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:922-930. [PMID: 33872132 DOI: 10.1080/19440049.2021.1898678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
An ultra-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS/MS) with pre-column derivatisation was developed and validated for the determination of semicarbazide in human urine. Urine samples were derivatised with 2-nitrobenzaldehyde and subsequently extracted with acetonitrile. Extracts were concentrated and then analysed by UPLC-MS/MS. The time per run was 7 min. Good results were observed for the linearity of matrix-matched calibration curves (R2 > 0.99) in the concentration range of 1-100 µg/L. The absolute recovery ranged from 98.7% to 108.6%, with the relative standard deviations (RSDs) of 2.2%-3.6%. The limit of detection and quantification for the semicarbazide was 0.5 µg/L and 1 µg/L, respectively. The method showed good extraction efficiency, high sensitivity, and good reproducibility. It was suitable for the detection of semicarbazide in human urine. Residues of semicarbazide were between 1.0 and 41.5 μg/L in children's 24-h urine. This work is the first report on the quantitative analysis of SEM in 24-h human urine samples.
Collapse
Affiliation(s)
- Huamei Yang
- Taizhou Center for Disease Prevention and Control, Taizhou, China
| | - Xiaoli Jiang
- Taizhou Center for Disease Prevention and Control, Taizhou, China
| | - Yanli Wang
- Nanjing Center for Disease Prevention and Control, Nanjing, China
| | - Chen Li
- Taizhou Center for Disease Prevention and Control, Taizhou, China
| | - Li Hang
- Taizhou Center for Disease Prevention and Control, Taizhou, China
| | - Weihong Huang
- Taizhou Center for Disease Prevention and Control, Taizhou, China
| |
Collapse
|
6
|
De novo transcriptome assembly of four organs of Collichthys lucidus and identification of genes involved in sex determination and reproduction. PLoS One 2020; 15:e0230580. [PMID: 32218589 PMCID: PMC7100973 DOI: 10.1371/journal.pone.0230580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/03/2020] [Indexed: 01/04/2023] Open
Abstract
The spinyhead croaker (Collichthys lucidus) is a commercially important fish species, which is mainly distributed in the coastal regions of China. However, little is known about the molecular regulatory mechanism underlying reproduction in C. lucidus. A de novo transcriptome assembly in brain, liver, ovary and testis tissues of C. lucidus was performed. Illumina sequencing generated 60,322,004, 57,044,284, 60,867,978 and 57,087,688 clean reads from brain, liver, ovary and testis tissues of C. lucidus, respectively. Totally, 131,168 unigenes with an average length of 644 bp and an N50 value of 1033 bp were assembled. In addition, 1288 genes were differentially expressed between ovary and testis, including 442 up-regulated and 846 down-regulated in ovary. Functional analysis revealed that the differentially expressed genes between ovary and testis were mainly involved in the function of sexual reproduction, sex differentiation, development of primary male sexual characteristics, female gamete generation, and male sex differentiation. A number of genes which might be involved in the regulation of reproduction and sex determination were found, including HYAL and SYCP3 and BMP15. Furthermore, 35,476 simple sequence repeats (SSRs) were identified in this transcriptome dataset, which would contribute to further genetic and mechanism researches. De novo transcriptome sequencing analysis of four organs of C. lucidus provides rich resources for understanding the mechanism of reproductive development of C. lucidus and further investigation of the molecular regulation of sex determination and reproduction of C. lucidus.
Collapse
|
7
|
Rutherford RJ, Lister AL, MacLatchy DL. Physiological effects of 5α-dihydrotestosterone in male mummichog (Fundulus heteroclitus) are dose and time dependent. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105327. [PMID: 31703940 DOI: 10.1016/j.aquatox.2019.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Numerous anthropogenic sources, such as pulp mill and sewage treatment effluents, contain androgenic endocrine disrupting compounds that alter the reproductive status of aquatic organisms. The current study injected adult male mummichog (Fundulus heteroclitus) with 0 (control), 1 pg/g, 1 ng/g or 1 μg/g body weight of the model androgen 5α-dihydrotestosterone (DHT) with the intent to induce a period of plasma sex hormone depression, a previously-observed effect of DHT in fish. A suite of gonadal steroidogenic genes were assessed during sex hormone depression and recovery. Fish were sampled 6, 12, 16, 18, 24, 30 and 36 h post-injection, and sections of testis tissue were either snap frozen immediately or incubated for 24 h at 18 °C to determine in vitro gonadal hormone production and then frozen. Plasma testosterone (T) and 11-ketotestosterone (11KT) were depressed beginning 24 h post-injection. At 36 h post-injection plasma T remained depressed while plasma 11KT had recovered. In snap frozen tissue there was a correlation between plasma sex hormone depression and downregulation of key steroidogenic genes including steroidogenic acute regulatory protein (star), cytochrome P450 17a1 (cyp17a1), 3β-hydroxysteroid dehydrogenase (3βhsd), 11β-hydroxysteroid dehydrogenase (11βhsd) and 17β-hydroxysteroid dehydrogenase (17βhsd). Similar to previous studies, 3βhsd was the first and most responsive gene during DHT exposure. Gene responses from in vitro tissue were more variable and included the upregulation of 3βhsd, 11βhsd and star during the period of hormone depression. The differential expression of steroidogenic genes from the in vitro testes compared to the snap frozen tissues may be due to the lack of regulators from the hypothalamo-pituitary-gonadal axis present in whole-animal systems. Due to these findings it is recommended to use snap frozen tissue, not post-incubation tissue from in vitro analysis, for gonadal steroidogenic gene expression to more accurately reflect in vivo responses.
Collapse
Affiliation(s)
- Robert J Rutherford
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
| | - Andrea L Lister
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - Deborah L MacLatchy
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
8
|
Carpéné C, Boulet N, Chaplin A, Mercader J. Past, Present and Future Anti-Obesity Effects of Flavin-Containing and/or Copper-Containing Amine Oxidase Inhibitors. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E9. [PMID: 30650583 PMCID: PMC6473341 DOI: 10.3390/medicines6010009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
Background: Two classes of amine oxidases are found in mammals: those with a flavin adenine dinucleotide as a cofactor, such as monoamine oxidases (MAO) and lysine-specific demethylases (LSD), and those with copper as a cofactor, including copper-containing amine oxidases (AOC) and lysyl oxidases (LOX). All are expressed in adipose tissue, including a semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) strongly present on the adipocyte surface. Methods: Previously, irreversible MAO inhibitors have been reported to limit food intake and/or fat extension in rodents; however, their use for the treatment of depressed patients has not revealed a clear anti-obesity action. Semicarbazide and other molecules inhibiting SSAO/VAP-1 also reduce adiposity in obese rodents. Results: Recently, a LOX inhibitor and a subtype-selective MAO inhibitor have been shown to limit fattening in high-fat diet-fed rats. Phenelzine, which inhibits MAO and AOC, limits adipogenesis in cultured preadipocytes and impairs lipogenesis in mature adipocytes. When tested in rats or mice, phenelzine reduces food intake and/or fat accumulation without cardiac adverse effects. Novel amine oxidase inhibitors have been recently characterized in a quest for promising anti-inflammatory or anti-cancer approaches; however, their capacity to mitigate obesity has not been studied so far. Conclusions: The present review of the diverse effects of amine oxidase inhibitors impairing adipocyte differentiation or limiting excessive fat accumulation indicates that further studies are needed to reveal their potential anti-obesity properties.
Collapse
Affiliation(s)
- Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse Cedex 4, France.
| | - Nathalie Boulet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse Cedex 4, France.
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Josep Mercader
- Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, 07122 Palma, Spain.
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma, Spain.
| |
Collapse
|