1
|
Rahman H, Vikram P, Hammami Z, Singh RK. Recent advances in date palm genomics: A comprehensive review. Front Genet 2022; 13:959266. [PMID: 36176294 PMCID: PMC9513354 DOI: 10.3389/fgene.2022.959266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
As one of the oldest fruit trees of the Arabian peninsula, other Middle-Eastern countries, and also North Africa, the date palm (Phoenix dactylifera L.), is highly significant for the economy of the region. Listed as part of UNESCO’s Intangible Cultural Heritage of Humanity, the date palm is believed to be the first tree cultivated by human beings, and was probably first harvested for its fruit nearly 7,000 years ago. Initial research efforts in date palm genetics focused on understanding the genetic diversity of date palm germplasm collections and its phylogenetic history, both important prerequisites for plant improvement. Despite various efforts, the center of origin of the date palm is still unclear, although genomic studies suggest two probable domestication events: one in the Middle East and the other in North Africa, with two separate gene pools. The current review covers studies related to omics analyses that have sought to decipher the present genetic diversity of the date palm. With advances and cost reductions in sequencing technologies, rapid progress has been made in the past few years in date palm genomics research. Along with organellar genomes, several reference genomes of the date palm are now available. In addition, several genotypes have been re-sequenced, either to detect single nucleotide polymorphisms (SNPs), or to study domestication and identification of key genes/loci associated with important agronomic traits, such as sex, fruit color, and sugar composition. These genomics research progress has paved the way to perform fast-track and precise germplasm improvement processes in date palm. In this study, we review the advances made in the genetics and genomics of the date palm so as to strategize targeted crop improvement plans for marginal areas of the Middle Eastern peninsula, North Africa, and other parts of the world.
Collapse
|
2
|
Chaâbene Z, Rorat A, Kriaa W, Rekik I, Mejdoub H, Vandenbulcke F, Elleuch A. In-site and Ex-site Date Palm Exposure to Heavy Metals Involved Infra-Individual Biomarkers Upregulation. PLANTS 2021; 10:plants10010137. [PMID: 33445405 PMCID: PMC7826821 DOI: 10.3390/plants10010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
As a tree of considerable importance in arid regions-date palm, Phoenix dactylifera L. survival in contaminated areas of Sfax city has drawn our attention. Leaf samples of the plants grown in the study area showed high levels of cadmium (Cd), copper (Cu), and chromium (Cr). On the basis of this finding, the cellular mechanisms that explain these metal accumulations were investigated in controlled conditions. After four months of exposure to Cd, Cr, or Cu, high bioconcentration and translocation factor (TF>1) have been shown for date palm plantlets exposed to Cd and low TF values were obtained for plantlets treated with Cr and Cu. Moreover, accumulation of oxidants and antioxidant enzyme activities occurred in exposed roots to Cu and Cd. Secondary metabolites, such as polyphenols and flavonoids, were enhanced in plants exposed at low metal concentrations and declined thereafter. Accumulation of flavonoids in cells may be correlated with the expression of the gene encoding Pdmate5, responsible for the transport of secondary metabolites, especially flavonoids. Other transporter genes responded positively to metal incorporation, especially Pdhma2, but also Pdabcc and Pdnramp6. The latter would be a new candidate gene sensitive to metallic stress in plants. Expressions of gene coding metal chelators were also investigated. Pdpcs1 and Pdmt3 exhibited a strong induction in plants exposed to Cr. These modifications of the expression of some biochemical and molecular based-markers in date palm helped to better understand the ability of the plant to tolerate metals. They could be useful in assessing heavy metal contaminations in polluted soils and may improve accumulation capacity of other plants.
Collapse
Affiliation(s)
- Zayneb Chaâbene
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia; (H.M.); (A.E.)
- Laboratoire de Génie Civil et géo-Environnement–Université de Lille 1, F-59655 Villeneuve d’Ascq, France; (A.R.); (F.V.)
- Correspondence:
| | - Agnieszka Rorat
- Laboratoire de Génie Civil et géo-Environnement–Université de Lille 1, F-59655 Villeneuve d’Ascq, France; (A.R.); (F.V.)
| | - Walid Kriaa
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Imen Rekik
- High Institute of Applied Biology of Medenine, Medenine 4119, Tunisia;
| | - Hafedh Mejdoub
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia; (H.M.); (A.E.)
| | - Franck Vandenbulcke
- Laboratoire de Génie Civil et géo-Environnement–Université de Lille 1, F-59655 Villeneuve d’Ascq, France; (A.R.); (F.V.)
| | - Amine Elleuch
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia; (H.M.); (A.E.)
| |
Collapse
|
3
|
Holubek R, Deckert J, Zinicovscaia I, Yushin N, Vergel K, Frontasyeva M, Sirotkin AV, Bajia DS, Chmielowska-Bąk J. The Recovery of Soybean Plants after Short-Term Cadmium Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E782. [PMID: 32580460 PMCID: PMC7356936 DOI: 10.3390/plants9060782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cadmium is a non-essential heavy metal, which is toxic even in relatively low concentrations. Although the mechanisms of Cd toxicity are well documented, there is limited information concerning the recovery of plants after exposure to this metal. METHODS The present study describes the recovery of soybean plants treated for 48 h with Cd at two concentrations: 10 and 25 mg/L. In the frame of the study the growth, cell viability, level of membrane damage makers, mineral content, photosynthesis parameters, and global methylation level have been assessed directly after Cd treatment and/or after 7 days of growth in optimal conditions. RESULTS The results show that exposure to Cd leads to the development of toxicity symptoms such as growth inhibition, increased cell mortality, and membrane damage. After a recovery period of 7 days, the exposed plants showed no differences in relation to the control in all analyzed parameters, with an exception of a slight reduction in root length and changed content of potassium, magnesium, and manganese. CONCLUSIONS The results indicate that soybean plants are able to efficiently recover even after relatively severe Cd stress. On the other hand, previous exposure to Cd stress modulated their mineral uptake.
Collapse
Affiliation(s)
- Renata Holubek
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University, ul. Nábrežie mládeže 91, 949-74 Nitra, Slovakia; (R.H.); (A.V.S.)
| | - Joanna Deckert
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Inga Zinicovscaia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 1419890 Dubna, Moscow Region, Russian; (I.Z.); (N.Y.); (K.V.); (M.F.)
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, 077125 Bucharest–Magurele, Romania
| | - Nikita Yushin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 1419890 Dubna, Moscow Region, Russian; (I.Z.); (N.Y.); (K.V.); (M.F.)
| | - Konstantin Vergel
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 1419890 Dubna, Moscow Region, Russian; (I.Z.); (N.Y.); (K.V.); (M.F.)
| | - Marina Frontasyeva
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 1419890 Dubna, Moscow Region, Russian; (I.Z.); (N.Y.); (K.V.); (M.F.)
| | - Alexander V. Sirotkin
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University, ul. Nábrežie mládeže 91, 949-74 Nitra, Slovakia; (R.H.); (A.V.S.)
| | - Donald Samdumu Bajia
- Department of Biochemistry, Faculty of Science, The University of Bamenda, ENS Street, Bambili, Cameroon;
- Department of Biotechnology, University of Verona, Via San Francesco, 22, 37129 Verona VR, Italy
| | - Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| |
Collapse
|
4
|
Hazzouri KM, Flowers JM, Nelson D, Lemansour A, Masmoudi K, Amiri KMA. Prospects for the Study and Improvement of Abiotic Stress Tolerance in Date Palms in the Post-genomics Era. FRONTIERS IN PLANT SCIENCE 2020; 11:293. [PMID: 32256513 PMCID: PMC7090123 DOI: 10.3389/fpls.2020.00293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/26/2020] [Indexed: 05/05/2023]
Abstract
Date palm (Phoenix dactylifera L.) is a socio-economically important crop in the Middle East and North Africa and a major contributor to food security in arid regions of the world. P. dactylifera is both drought and salt tolerant, but recent water shortages and increases in groundwater and soil salinity have threatened the continued productivity of the crop. Recent studies of date palm have begun to elucidate the physiological mechanisms of abiotic stress tolerance and the genes and biochemical pathways that control the response to these stresses. Here we review recent studies on tolerance of date palm to salinity and drought stress, the role of the soil and root microbiomes in abiotic stress tolerance, and highlight recent findings of omic-type studies. We present a perspective on future research of abiotic stress in date palm that includes improving existing genome resources, application of genetic mapping to determine the genetic basis of variation in tolerances among cultivars, and adoption of gene-editing technologies to the study of abiotic stress in date palms. Development of necessary resources and application of the proposed methods will provide a foundation for future breeders and genetic engineers aiming to develop more stress-tolerant cultivars of date palm.
Collapse
Affiliation(s)
- Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jonathan M. Flowers
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - David Nelson
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Khaled Masmoudi
- College of Food and Agriculture, Department of Integrative Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- College of Science, Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|