1
|
da Rosa DF, Macedo AJ. The genus Anoxybacillus: an emerging and versatile source of valuable biotechnological products. Extremophiles 2023; 27:22. [PMID: 37584877 DOI: 10.1007/s00792-023-01305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Thermophilic and alkaliphilic microorganisms are unique organisms that possess remarkable survival strategies, enabling them to thrive on a diverse range of substrates. Anoxybacillus, a genus of thermophilic and alkaliphilic bacteria, encompasses 24 species and 2 subspecies. In recent years, extensive research has unveiled the diverse array of thermostable enzymes within this relatively new genus, holding significant potential for industrial and environmental applications. The biomass of Anoxybacillus has demonstrated promising results in bioremediation techniques, while the recently discovered metabolites have exhibited potential in medicinal experiments. This review aims to provide an overview of the key experimental findings related to the biotechnological applications utilizing bacteria from the Anoxybacillus genus.
Collapse
Affiliation(s)
- Deisiane Fernanda da Rosa
- Laboratório de Diversidade Microbiana (LABDIM), Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Alexandre José Macedo
- Laboratório de Diversidade Microbiana (LABDIM), Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
2
|
Omeroglu MA, Baltaci MO, Adiguzel A. Anoxybacillus: an overview of a versatile genus with recent biotechnological applications. World J Microbiol Biotechnol 2023; 39:139. [PMID: 36995480 DOI: 10.1007/s11274-023-03583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The Bacillaceae family members are considered to be a good source of microbial factories for biotechnological processes. In contrast to Bacillus and Geobacillus, Anoxybacillus, which would be thermophilic and spore-forming group of bacteria, is a relatively new genus firstly proposed in the year of 2000. The development of thermostable microbial enzymes, waste management and bioremediation processes would be a crucial parameter in the industrial sectors. There has been increasing interest in Anoxybacillus strains for biotechnological applications. Therefore, various Anoxybacillus strains isolated from different habitats have been explored and identified for biotechnological and industrial purposes such as enzyme production, bioremediation and biodegradation of toxic compounds. Certain strains have ability to produce exopolysaccharides possessing biological activities including antimicrobial, antioxidant and anticancer. This current review provides past and recent discoveries regarding Anoxybacillus strains and their potential biotechnological applications in enzyme industry, environmental processes and medicine.
Collapse
Affiliation(s)
- Mehmet Akif Omeroglu
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, 25400, Turkey
| | - Mustafa Ozkan Baltaci
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, 25400, Turkey.
| | - Ahmet Adiguzel
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, 25400, Turkey.
| |
Collapse
|
3
|
Zhang W, Li T, Li Y, Ma Y, Xie HQ, Zou X, Wu J, Li Y, Wang R, Zhao B. Gut microbiota of Anabas testudineus (Bloch, 1792) in the e-waste dismantling region: In situ status and relationship with internal metal burden. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106171. [PMID: 35504175 DOI: 10.1016/j.aquatox.2022.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Due to the production of large quantities of electronic waste (e-waste), unsafe dismantling has caused serious pollution as well as toxicological impacts on both wildlife and humans. As an important aspect of physiology and health, the wildlife's gut microbiota and its changes induced by pollution have been recruiting increasing concerns. To reveal the gut microbiota-related ecotoxicology induced by e-waste dismantling, this study resolves the gut microbiota profile of Anabas testudineus, a native highly adapted nonmodel fish under the in situ exposure, and reveals whether and how the microbiota was altered. The comparisons are made by collecting samples from different e-waste polluted sites in Guiyu (a town in South China) and a nearby reference (nonpolluted) site. The overall gut microbiota landscape of A. testudineus is similar to that of other reported fishes, with an average of ∼300 OTUs, and constituted by Firmicutes (34.51%), Fusobacteria (29.16%) as the major phyla. Obviously different liver metal burdens/fingerprints were observed between the e-waste and reference sites. Accordingly, although the alpha-diversity (ACE, Simpson, and Shannon) of the gut microbiota did not significantly vary, a detailed exploration of the microbiota constitution indicated significant differences at various taxonomic levels, including a series of significantly different species and biomarkers, and showing site-specific beta-diversity clustering patterns. Interestingly, a few bacteria with greater abundance in the fish gut of e-waste polluted sites were also reported to present in other contaminated environments, have a role in wastewater treatment, be capable to transform metal, etc. Redundancy analysis (RDA) and Pearson association analyses indicated significant associations between Mn and Cetobacterium somerae (Pearson r = 0.3612, p = 0.0008) and between Pb and Clostridium colicanis (Pearson r = 0.5151, p < 0.0001). In summary, pollution from e-waste dismantling may have a role in altering the fish gut microbiota, and this research provides insights for better understanding e-waste ecotoxicology and improving future conservation.
Collapse
Affiliation(s)
- Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Tengzhou Li
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yufeng Li
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianghui Zou
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Jiameng Wu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Akkurt Ş, Oğuz M, Alkan Uçkun A. Bioreduction and bioremoval of hexavalent chromium by genetically engineered strains (Escherichia coli MT2A and Escherichia coli MT3). World J Microbiol Biotechnol 2022; 38:45. [PMID: 35075546 DOI: 10.1007/s11274-022-03235-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023]
Abstract
The number of studies on the removal of hazardous metals from water using genetic engineering technologies is growing. A high rate of metal ion removal from the environment is ensured, particularly through the expression of cysteine and thiol-rich proteins such as metallothioneins in bacterial cells. In this study, we used recombinant strains created by cloning the human metallothioneins MT2A and MT3 into Escherichia coli Jm109 to assess the removal and reduction of hexavalent chromium (Cr(VI)) from aqueous solutions. MT2A was the most effective strain in both Cr(VI) removal (89% in 25 mg/L Cr(VI)) and Cr(VI) reduction (76% in 25 mg/L Cr(VI)). The amount of Cr adsorbed per dry cell by the MT2A strain was 22 mg/g. The biosorption of total Cr was consistent with the Langmuir isotherm model. Scanning electron microscope (SEM) images revealed that the morphological structures of Cr(VI)-treated cells were significantly damaged when compared to control cells. Scanning transmission electron microscope (STEM) images showed black spots in the cytoplasm of cells treated with Cr(VI). Shifts in the Fourier transform infrared spectroscopy analysis (FTIR) spectra of the cells treated with Cr(VI) showed that the groups interacting with Cr were hydroxyl, amine, amide I, amide II, phosphoryl and carbonyl. When all of the experimental data was combined, it was determined that both MT2A and MT3 were effective in removing Cr(VI) from aqueous solutions, but MT2A was more effective, indicating that MT2A may be employed as a biotechnological tool.
Collapse
Affiliation(s)
- Şeyma Akkurt
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Altınşehir Neighborhood, Ataturk Boulevard, No. 1, Central Campus, 02040, Central, Adıyaman, Turkey
| | - Merve Oğuz
- Department of Environmental Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Altınşehir Neighborhood, Ataturk Boulevard, No. 1, Central Campus, 02040, Central, Adıyaman, Turkey.
| |
Collapse
|
5
|
Saha L, Tiwari J, Bauddh K, Ma Y. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front Microbiol 2021; 12:731723. [PMID: 35002995 PMCID: PMC8733405 DOI: 10.3389/fmicb.2021.731723] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.
Collapse
Affiliation(s)
- Lala Saha
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Wu X, Huang P, Dong C, Deng X. Nickel bioaccumulation by a marine bacterium Brevibacterium sp. (X6) isolated from Shenzhen Bay, China. MARINE POLLUTION BULLETIN 2021; 170:112656. [PMID: 34186449 DOI: 10.1016/j.marpolbul.2021.112656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Nickel bioaccumulation capacity of a marine Brevibacterium sp., designated as X6, was evaluated to explore its potential application in the bioremediation of Ni2+ pollutants in marine environments. The minimum Ni2+ inhibitory concentration and maximum Ni2+ bioaccumulation of X6 were 1000 mg/L and 100.95 mg/g, respectively, higher than most reported strains. Among the co-existing metal ions in seawater, K+ caused a slight adverse impact on Ni2+ uptake, followed by Na+ and Ca2+, whereas Mg2+ drastically inhibited Ni2+ bioaccumulation. Other heavy metals such as Co2+, Zn2+ and Cd2+ moderately affected Ni2+ binding, but the adverse effect of Cu2+ was severe. The investigation of the mechanism of Ni2+ bioaccumulation revealed that 66.34% of the accumulated Ni2+ was bound to the cell surface. Carboxylic, hydroxyl, amino and thiol groups participated in Ni2+ binding, while carboxylic group contributed the most, while thiol group may be more involved in Ni2+ binding at low Ni2+ concentrations.
Collapse
Affiliation(s)
- Xujia Wu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Pei Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Chenyang Dong
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xu Deng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Masood S, Rehman AU, Bashir S, El Shazly M, Imran M, Khalil P, Ifthikar F, Jaffar HM, Khursheed T. Investigation of the anti-hyperglycemic and antioxidant effects of wheat bread supplemented with onion peel extract and onion powder in diabetic rats. J Diabetes Metab Disord 2021; 20:485-495. [PMID: 34222073 PMCID: PMC8212200 DOI: 10.1007/s40200-021-00770-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
AIM Onion is one of the commonly cultivated and consumed vegetables rich in nutrients and phytochemicals. Various nutraceuticals are found in the outer fleshy layers and dry peel of onion which usually is treated as a common biowaste. Diabetes mellitus is a leading non communicable disease causing hyperglycemia and increased production of free radicals that potentially disrupts antioxidant enzymatic activity. Considering global consumption of wheat, the present study was designed to evaluate the anti-hyperglycemic and antioxidant effects of wheat bread supplemented with onion peel extract (OPE) or onion powder (OP) on diabetic rats. METHODS In this study, ethanolic extract of onion peel and onion bulb were prepared separately. Male Sprague Dawley rats were divided into 6 groups (n = 7). Different regimens of supplemented wheat bread (OPE (1% and 3%) and OP (5% and 7%)) were given to diabetic rats for eight weeks, plain bread was used as the control. Blood glucose level, body weight and activities of SOD, CAT, GPx, GR, GSH and MDA in the liver and kidney tissues were evaluated. Statistical analysis was performed using SPSS Version (25) and Dunnett's multiple comparison test. RESULTS Bread supplemented with 1% and 3% onion peel extract and 7% onion powder significantly reduced blood glucose levels and MDA in the treated rats compared with the control group diabetic rats. Body weight of diabetic rats was reduced for control group, while onion supplemented diet improved the body weight of treated rats. Onion supplementation also brought significant improvement in antioxidant enzyme activities among the treated diabetic rats. CONCLUSION These findings suggested that onion supplementation is effective in lowering blood glucose and could potentially aid in protecting organs from oxidative stress.
Collapse
Affiliation(s)
- Sara Masood
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Attiq ur Rehman
- Horticulture Technologies, Production Systems Unit, Natural Resources Institute (Luke), Toivonlinnantie 518, FI-21500 Piikkiö, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, FI-00790 Helsinki, Finland
| | - Shahid Bashir
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Mohamed El Shazly
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo, Abbassia 11566 Egypt
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Palwasha Khalil
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Faiza Ifthikar
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Hafiza Madiha Jaffar
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Tara Khursheed
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| |
Collapse
|