Duran-Izquierdo M, Taboada-Alquerque M, Sierra-Marquez L, Alvarez-Ortega N, Stashenko E, Olivero-Verbel J. Hydroalcoholic extract of Haematoxylum brasiletto protects Caenorhabditis elegans from cadmium-induced toxicity.
BMC Complement Med Ther 2022;
22:184. [PMID:
35818043 PMCID:
PMC9272861 DOI:
10.1186/s12906-022-03654-6]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background
H. brasiletto is used in popular culture due to its therapeutic properties, including antioxidant, anti-inflammatory and antiproliferative properties, although little is known about its role as a protector against metal toxicity. This study aimed to investigate the chemical composition and efficacy of the hydroalcoholic extract from H. brasiletto (HAE-Hbrasiletto) collected in northern Colombia to defend against cadmium (Cd)-induced toxicity.
Methods
Phytochemical characterization was performed using HPLC-ESI-QTOF. Caenorhabditis elegans was employed to assess the shielding effect of HAE-Hbrasiletto against Cd toxicity in vivo, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was utilized to measure radical scavenging activity.
Results
The main secondary metabolites identified by HPLC-ESI-QTOF in the extracts were hematoxylins (brazilein and hematein) and protosappanins (protosappanin A, B and C, 10-O-methylprotosappanin B, and protosappanin A dimethyl acetal). The HAE-Hbrasiletto elicited low lethality in N2 worms and significantly reduced the Cd-induced death of the nematodes. It also improved Cd-induced motility inhibition, as well as body length and reproduction reduction provoked by the heavy metal. The extract displayed a good capacity to halt Cd-induced DAF-16 translocation. As this last process was associated with lethality (r = 0.962, p < 0.01), the antioxidant properties of the extract may contribute to ameliorating tissue damage induced by oxidative stress from Cd exposure.
Conclusion
HAE-Hbrasiletto has remarkable properties to protect against Cd-induced toxicity.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12906-022-03654-6.
Most secondary metabolites tentatively identified in H. brasiletto are homoisoflavones.
Hidroalcoholic extract of H. brasiletto protects C. elegans from Cd toxicity
The extract diminished Cd-induced damage to reproduction, growth, and locomotion.
Cd-induced oxidative stress and translocation of DAF-16 are blocked by the extract.
Collapse