1
|
Zuo Y, Zhou F, Huang R, Jia Z, Xie J, Wang G, Jia S, Li Y, Wang M, Liao L, Ge F, Wang Y. Effects of 2,4,6-Trichloroanisole on the morphological development and motility of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175316. [PMID: 39117193 DOI: 10.1016/j.scitotenv.2024.175316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
2,4,6-Trichloroanisole (2,4,6-TCA), a compound with a characteristic earthy odor, is a common source of odorous pollutants in drinking water and wine. However, research on its biological toxicity is limited. In this study, we used zebrafish as an indicator model to investigate the effects of 2,4,6-TCA exposure on morphological development, oxidative stress, apoptosis, heart rate, blood flow, and motility. We found that exposure to 2,4,6-TCA resulted in significant spinal, tail, and cardiac deformities in zebrafish larvae and promoted a pronounced oxidative stress response and extensive cell apoptosis, notably in the digestive tract, head, spine, and heart, ultimately leading to significant reductions in zebrafish heart rate, blood flow, and motility. Moreover, these effects became more pronounced with an increase in the concentration of 2,4,6-TCA to which the zebrafish were exposed. Furthermore, qPCR analysis revealed that exposure to 2,4,6-TCA promoted significant changes in the expression levels of genes associated with oxidative stress, apoptosis, cardiac development, and the nervous system, particularly key genes (p53, apaf1, casp9, and casp3) in the mitochondrial apoptotic pathway, which were significantly upregulated. Similarly, we detected significant upregulation of ache gene expression. These findings indicated that exposure to 2,4,6-TCA resulted in the accumulation of reactive oxygen species in zebrafish, induced strong oxidative stress responses, and triggered lipid peroxidation and extensive cell apoptosis. Cellular apoptosis, which mitochondrial signaling pathways may mediate, has been found to lead to malformations in zebrafish embryos, resulting in significant reductions in cardiac function and motility. To our knowledge, this is the first systematic assessment of the toxicity of 2,4,6-TCA, and our findings provide an important reference for risk assessment and early warning of 2,4,6-TCA exposure.
Collapse
Affiliation(s)
- Yanxia Zuo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fang Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhihui Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juhong Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangxin Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuzhao Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Manyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Pálešová N, Bláhová L, Janoš T, Řiháčková K, Pindur A, Šebejová L, Čupr P. Exposure to benzotriazoles and benzothiazoles in Czech male population and its associations with biomarkers of liver function, serum lipids and oxidative stress. Int Arch Occup Environ Health 2024; 97:523-536. [PMID: 38546760 PMCID: PMC11130049 DOI: 10.1007/s00420-024-02059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Benzotriazoles and benzothiazoles (BTs) are high-production volume chemicals as well as widely distributed emerging pollutants with potential health risk. However, information about human exposure to BTs and associated health outcomes is limited. OBJECTIVE We aimed to characterise exposure to BTs among Czech men, including possible occupational exposure among firefighters, its predictors, and its associations with liver function, serum lipids and oxidative stress. METHODS 165 participants (including 110 firefighters) provided urine and blood samples that were used to quantify the urinary levels of 8 BTs (high-performance liquid chromatography-tandem mass spectrometry), and 4 liver enzymes, cholesterol, low-density lipoprotein, and 8-hydroxy-2'-deoxyguanosine. Linear regression was used to assess associations with population characteristics and biomarkers of liver function, serum lipids and oxidative stress. Regression models were adjusted for potential confounding variables and false discovery rate procedure was applied to account for multiplicity. RESULTS The BTs ranged from undetected up to 46.8 ng/mL. 2-hydroxy-benzothiazole was the most predominant compound (detection frequency 83%; median 1.95 ng/mL). 1-methyl-benzotriazole (1M-BTR) was measured in human samples for the first time, with a detection frequency 77% and median 1.75 ng/mL. Professional firefighters had lower urinary 1M-BTR compared to non-firefighters. Urinary 1M-BTR was associated with levels of γ-glutamyl transferase (β = - 17.54%; 95% CI: - 26.127, - 7.962). CONCLUSION This is the first study to investigate BT exposure in Central Europe, including potentially exposed firefighters. The findings showed a high prevalence of BTs in the study population, the relevance of 1M-BTR as a new biomarker of exposure, and an urgent need for further research into associated adverse health outcomes.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Training Centre of Fire Rescue Service, General Directorate of Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00, Brno, Czech Republic
| | - Ludmila Šebejová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Gu J, Guo L, Chen C, Ji G, Wang L. Neurobehavioral toxic effects and mechanisms of 2-aminobenzothiazole exposure on zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169495. [PMID: 38142985 DOI: 10.1016/j.scitotenv.2023.169495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
2-Aminobenzothiazole (NTH), a benzothiazole derivative, exhibits potent biochemical activities and plays a significant role in modern industry. Widespread and intensive utilization of NTH has led to its detection in aquatic environments, encompassing both groundwater and surface water. Despite its wide usage, the effect of NTH on developmental neurotoxicity in aquatic organisms remains uncharted. Therefore, the aim of this investigation was to create exposure models for short- and long-term studies in order to analyze the neurobehavioral toxic impact of NTH (0, 50, 500, and 5000 μg/L) on zebrafish, which includes motor function, anxiety, and memory performance, as well as to examine the mechanism of neurotoxicity. The results revealed a significant suppression of initial embryonic mobility by NTH. However, during short-term exposure experiments, it did not significantly impact the developmental neurobehavioral functions of zebrafish. In addition, significant effects on zebrafish were observed after long-term exposure to 50 and 500 μg/L NTH, mainly impacting locomotion, social behavior, anxiety, and cognitive functions. Moreover, NTH caused oxidative damage in adult zebrafish brain tissue, which was accompanied by abnormal expression of oxidative damage-related genes. Furthermore, the Real-Time PCR results indicated a significant suppression of genes related to exposure to NTH, specifically those in the GABA synthesis pathway (gabrg2, gad2, gad1b, and abat) and the 5-HT synthesis pathway (tph2, tph1b, pet1, and htr1aa). Taken together, this study demonstrates for the first time that chronic exposure to NTH decreases the expression of genes associated with the zebrafish GABA synthesis pathway and the 5-HT synthesis pathway. This suppression is accompanied by oxidative damage, ultimately resulting in neurobehavioral changes related to motor ability, anxiety, and memory performance.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liguo Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Chen Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
4
|
Li M, Ivantsova E, Liang X, Martyniuk CJ. Neurotoxicity of Benzotriazole Ultraviolet Stabilizers in Teleost Fishes: A Review. TOXICS 2024; 12:125. [PMID: 38393220 PMCID: PMC10891865 DOI: 10.3390/toxics12020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Plastic additives that maintain integrity have been extensively studied for potential toxicity to fish; however, chemicals that protect polymers from (artificial) UV degradation are less studied. Benzotriazole UV stabilizers (BUVSs) are the most widely used UV stabilizers in plastics and are often used in sunscreens, cosmetics, paint, and food packaging. BUVSs can negatively affect aquatic wildlife when released into the environment via plastic degradation. In this review, we summarize the distribution of BUVSs globally and discuss neurotoxicological endpoints measured in fish to understand how these plastic additives can affect the neurological health of teleost fishes. BUVSs have been detected in aquatic environments at concentrations ranging from 0.05 up to 99,200 ng/L. Studies show that BUVSs affect behavioral responses and acetylcholinesterase activity, indicators of neurotoxicity. Our computational analysis using transcriptome data suggests certain pathways associated with neurodegeneration are responsive to exposure to BUVSs, like "Complement Activation in Alzheimer's Disease". Based on our review, we identify some research needs for future investigations: (1) molecular studies in the central nervous system to define precise mechanisms of neurotoxicity; (2) a wider range of tests for assessing aberrant behaviors given that BUVSs can affect the activity of larval zebrafish; and (3) histopathology of the nervous system to accompany biochemical analyses. These data are expected to enhance understanding of the neurotoxicity potential of benzotriazoles and other plastic additives.
Collapse
Affiliation(s)
- Mengli Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (M.L.); (X.L.)
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (M.L.); (X.L.)
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
5
|
Jyoti D, Sinha R. Physiological impact of personal care product constituents on non-target aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167229. [PMID: 37741406 DOI: 10.1016/j.scitotenv.2023.167229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Personal care products (PCPs) are products used in cleaning, beautification, grooming, and personal hygiene. The rise in diversity, usage, and availability of PCPs has resulted in their higher accumulation in the environment. Thus, these constitute an emerging category of environmental contaminants due to the potential of its constituents (chemical and non-chemical) to induce various physiological effects even at lower concentrations (ng/L). For analyzing the impact of the PCPs constituents on the non-target organism about 300 article including research articles, review articles and guidelines were studied from 2000 to 2023. This review aims to firstly discuss the fate and accumulation of PCPs in the aquatic environment and organisms; secondly provides overview of environmental risks that are linked to PCPs; thirdly review the trends, current status of regulations and risks associated with PCPs and finally discuss the knowledge gaps and future perspectives for future research. The article discusses important constituents of PCPs such as antimicrobials, cleansing agents and disinfectants, fragrances, insect repellent, moisturizers, plasticizers, preservatives, surfactants, UV filters, and UV stabilizers. Each of them has been found to display certain toxic impact on the aquatic organisms especially the plasticizers and UV filters. These continuously and persistently release biologically active and inactive components which interferes with the physiological system of the non-target organism such as fish, corals, shrimps, bivalves, algae, etc. With a rise in the number of toxicity reports, concerns are being raised over the potential impacts of these contaminant on aquatic organism and humans. The rate of adoption of nanotechnology in PCPs is greater than the evaluation of the safety risk associated with the nano-additives. Hence, this review article presents the current state of knowledge on PCPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Science, Solan, India
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India.
| |
Collapse
|
6
|
Eriksson ANM, Dubiel J, Zink L, Lu Z, Doering JA, Wiseman S. Embryonic Exposure to Benzotriazole Ultraviolet Stabilizer 327 Alters Behavior of Rainbow Trout Alevin. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38088253 DOI: 10.1002/etc.5807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024]
Abstract
Benzotriazole ultraviolet (UV) stabilizers (BUVSs) are used in great quantities during industrial production of a variety of consumer and industrial goods. As a result of leaching and spill, BUVSs are detectable ubiquitously in the environment. As of May 2023, citing concerns related to bioaccumulation, biomagnification, and environmental persistence, (B)UV(S)-328 was recommended to be listed under Annex A of the Stockholm Convention on Persistent Organic Pollutants. However, a phaseout of UV-328 could result in a regrettable substitution because the replacement chemical(s) could cause similar or unpredicted toxicity in vivo, relative to UV-328. Therefore, the influence of UV-327, a potential replacement of UV-328, was investigated with respect to early life development of newly fertilized rainbow trout embryos (Oncorhynchus mykiss), microinjected with environmentally relevant concentrations of UV-327. Developmental parameters (standard length), energy consumption (yolk area), heart function, blue sac disease, mortality, and behavior were investigated. Alevins at 14 days posthatching, exposed to 107 ng UV-327 g-1 egg, presented significant signs of hyperactivity; they moved on average 1.8-fold the distance and at 1.5-fold the velocity of controls. Although a substantial reduction in body burden of UV-327 was observed at hatching, it is postulated that UV-327, due to its lipophilic properties, interfered with neurological development and signaling from the onset of neurogenesis. If these results hold true across multiple taxa and species, a potential contributor to neurodevelopmental disorders might have been identified. These findings suggest that UV-327 poses an unknown hazard to rainbow trout embryos and alevins, rendering UV-327 a potential regrettable substitution to UV-328. However, a qualified statement on a regrettable substitution requires a comparative investigation on the teratogenic effects between the two BUVSs. Environ Toxicol Chem 2024;00:1-10. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Andreas N M Eriksson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Lauren Zink
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Jon A Doering
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
7
|
Ran C, Liu Y, Li K, Wang C, Pu J, Sun H, Wang L. Combined pollution effects of Cu and benzotriazole in rice (Oryza sativa L.) verified by split-root experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91997-92006. [PMID: 37479939 DOI: 10.1007/s11356-023-28695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
Although the combined effect of organic ligands and heavy metals in the environment on plants have been frequently reported, their complexed interaction in plants and the physiological effects remain to be revealed. Metal complexing agent benzotriazole (BTR) has extensive environmental pollution. In this study, root-splitting experiments were designed to identify the in vivo and in vitro effects of BTR on the accumulation and translocation of Cu in rice (Oryza sativa L.), and the concentrations and translocation factor (TF) of Cu and BTR in different parts of rice were measured. In the in vitro interaction treatments, low BTR concentrations enhanced Cu uptake and lateral transport in rice, while higher levels of BTR's exposure (i.e., ≥ 100 μM) resulted in opposite effects. Differently, significant increase in the lateral transport of Cu and vertical translocation of BTR in rice presented in the in vivo interaction treatments. TF of Cu from root A to root B (TFRA-RB) increased from 0.05 to 0.272 with the BTR concentration increasing from 0 to 100 μM, and higher TF of BTR from root to shoot (TFR-S), ranging from 1.00 to 1.75, compared with single BTR exposure treatments was observed. The phytotoxicity of BTR expressed by the catalase activity was significantly alleviated by the in vivo accumulated Cu in rice.
Collapse
Affiliation(s)
- Chunmei Ran
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yubin Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ke Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Chenye Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jian Pu
- Institute for Future Initiatives, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
- , Tianjin, China.
| |
Collapse
|
8
|
Zhao Y, Xie M, Wang C, Wang Y, Peng Y, Nie X. Effects of atorvastatin on the Sirtuin/PXR signaling pathway in Mugilogobius chulae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60009-60022. [PMID: 37016258 DOI: 10.1007/s11356-023-26736-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Atorvastatin (ATV) is a hypolipidemic drug widely detected in the aquatic environment. Nevertheless, limited information is provided about the toxic effects of ATV on estuary or coastal species and the underlying mechanisms. In the present study, the responses of genes expression in pregnane X receptor (PXR) signaling pathway and enzymatic activities in the liver of the estuarine benthic fish (Mugilogobius chulae) were investigated under acute and sub-chronic ATV exposure. Results showed that PXR was significantly inhibited in the highest exposure concentration of ATV for a shorter time (24 h, 500 μg L-1) but induced in a lower concentration (72 h, 5 μg L-1). The downstream genes in PXR signaling pathway such as CYP3A, SULT, UGT, and GST showed similar trends to PXR. P-gp and MRP1 were repressed in most treatments. GCLC associated with GSH synthesis was mostly induced under ATV exposure for a long time (168 h), suggesting that reactive oxygen species (ROS) were generated under ATV exposure. Similarly, GST and SOD enzymatic activities significantly increased in most exposure treatments. Under ATV exposure, SIRT1 and SIRT2 displayed induction to some extent in most treatments, suggesting that SIRTs may affect PXR expression by regulating the acetylation levels of PXR. The investigation demonstrated that ATV exposure affected the expression of the Sirtuin/PXR signaling pathway, thus further interfered adaption of M. chulae to the environment.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Meinan Xie
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chao Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Zhao ML, Chen Y, Yang GP, Chen R. Simultaneous determination of benzothiazoles, benzotriazoles, and benzotriazole UV absorbers by solid-phase extraction-gas chromatography-mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45315-45330. [PMID: 36702982 DOI: 10.1007/s11356-023-25503-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Benzotriazoles (BTRs), benzothiazoles (BTHs), and benzotriazole ultraviolet absorbers (BUVs) are common products in plastic rubber and personal care products. Due to their toxicity and bioaccumulation, they have been identified as emerging contaminants (ECs) in the environment. Solid-phase microextraction (SPME) and solid-phase extraction (SPE) combined with gas chromatography-mass spectrometry (GC-MS) were used for the enrichment and detection of the contaminants in seawater and sediment, respectively. The conditions of SPE and SPME were optimized in terms of material, temperature, time, pH, ionic strength, extraction solvent, and elution solvent. Although SPME requires a small sample volume, it is not reliable for the extraction efficiency and reproducibility of BTHs, BTRs, and BUVs in seawater. However, the precision of SPE-GC-MS for the determination of BTHs, BTRs, and BUVs was around 10%, with recoveries of 67.40-102.3% and 77.35-101.8% in seawater and sediment, respectively. The limits of detection of 14 contaminants in seawater and sediment were 0.03-0.47 ng/L and 0.01-0.58 ng/g, respectively. Secondly, BTHs, BTRs, and BUVs were detected with low ecological risk when SPE-GC-MS was applied to the analysis of seawater and sediment samples from the Yangtze estuary and its adjacent areas. The SPE-GC-MS was highly precise with lower detection limits relative to previous studies and thus was able to meet the requirements for the detection of BTHs, BTRs, and BUVs in seawater and sediments.
Collapse
Affiliation(s)
- Ming-Liang Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yan Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao, 266100, China
| | - Rong Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|