1
|
Colás-Ruiz NR, Courant F, Gomez E, Lara-Martín PA, Hampel M. Transcriptomic and metabolomic integration to assess the response of gilthead sea bream (Sparus aurata) exposed to the most used insect repellent: DEET. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120678. [PMID: 36403875 DOI: 10.1016/j.envpol.2022.120678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
DEET is one of the most frequently detected insect repellents in the environment reaching concentrations of several μg L-1 in surface water. There is scarce information available regarding its mode of action in non-target organisms. Here, we have used an integrated metabolomic and transcriptomic approach to elucidate the possible adverse effects of DEET exposure in the marine fish gilthead sea bream (Sparus aurata). Individuals were exposed at an environmentally relevant concentration of DEET (10 μg L-1) for 22 days in a continuous flow-through system. Transcriptomic analysis revealed 250 differentially expressed genes in liver, while metabolomic analysis identified 190 differentially modulated features in liver and 98 in plasma. Multi-omic data integration and visualization allowed elucidation of the modes of action of DEET exposure, including: energy depletion through the disruption of carbohydrate and amino acids metabolisms, oxidative stress leading to DNA damage, lipid peroxidation, and damage to cell membrane and apoptosis. Activation of xenobiotic pathway as well as the inmune-inflammatory reaction was evidenced in the present work.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510, Puerto Real, Cádiz, Spain.
| | - Frédérique Courant
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Elena Gomez
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
2
|
Xiong NX, Kuang XY, Fang ZX, Ou J, Li SY, Zhao JH, Huang JF, Li KX, Wang R, Fan LF, Luo SW, Liu SJ. Transcriptome analysis and co-expression network reveal the mechanism linking mitochondrial function to immune regulation in red crucian carp (Carassius auratus red var) after Aeromonas hydrophila challenge. JOURNAL OF FISH DISEASES 2022; 45:1491-1509. [PMID: 35749280 DOI: 10.1111/jfd.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is a common pathogen of freshwater fish. In this study, A. hydrophila infection was shown to cause tissue damage, trigger physiological changes as well as alter the expression profiles of immune- and metabolic-related genes in immune tissues of red crucian carp (RCC). Transcriptome analysis revealed that acute A. hydrophila infection exerted a profound effect on mitochondrial oxidative phosphorylation linking metabolic regulation to immune response. In addition, we further identified cellular senescence, apoptosis, necrosis and mitogen-activated protein kinase signal pathways as crucial signal pathways in the kidney of RCC subjected to A. hydrophila infection. These findings may have important implications for understanding modulation of immunometabolic response to bacterial infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shi-Yun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jia-Hui Zhao
- Foreign studies college, Hunan Normal University, Changsha, China
| | - Jin-Fang Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ke-Xin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Rou Wang
- Foreign studies college, Hunan Normal University, Changsha, China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Xiong NX, Huang JF, Li KX, Li SY, Zhao JH, Wang R, Ou J, Fan LF, Luo SW, Liu SJ. Comparative analysis on the immunoregulatory roles of ferritin M in hybrid fish (Carassius cuvieri ♀ × Carassius auratus red var ♂) and its parental species after bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 126:197-210. [PMID: 35609760 DOI: 10.1016/j.fsi.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Ferritin M is involved in the regulation of fish immunity. In this study, open reading frame (ORF) sequences of ferritin M from hybrid fish and its parental species were 534 bp. Tissue-specific analysis indicated that the highest level of ferritin M from red crucian carp was observed in kidney, while peaked expressions of ferritin M from white crucian carp and hybrid carp were observed in gill. Elevated levels of ferritin M from hybrid carp and its parental species were detected in immune-related tissues following Aeromonas hydrophila infection or in cultured fish cell lines after lipopolysaccharide (LPS) challenge. Ferritin M overexpression could attenuate NF-κB and TNFα promoter activity in their respective fish cells. Purified ferritin M fusion proteins elicited in vitro binding activity to A. hydrophila and Edwardsiella tarda, lowered bacterial dissemination to tissues and alleviated inflammatory response. Furthermore, treatment with ferritin M fusion proteins could mitigate bacteria-induced liver damage and rescue antioxidant activity. These results suggested that ferritin M in hybrid fish showed a similar immune defense against bacteria infection in comparison with those of its parental species.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Jin-Fang Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ke-Xin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shi-Yun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Jia-Hui Zhao
- Foreign Studies College, Hunan Normal University, Changsha, 410081, PR China
| | - Rou Wang
- Foreign Studies College, Hunan Normal University, Changsha, 410081, PR China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|