1
|
Li L, Yang L, Zhang L, He F, Xia Z, Xiang B. Multi-omic analysis reveals that Bacillus licheniformis enhances pekin ducks growth performance via lipid metabolism regulation. Front Pharmacol 2024; 15:1412231. [PMID: 38933681 PMCID: PMC11201536 DOI: 10.3389/fphar.2024.1412231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Bacillus licheniformis (B.licheniformis) was widely used in poultry feeds. However, it is still unclear about how B.licheniformis regulates the growth and development of Pekin ducks. Methods: The experiment was designed to clarify the effect and molecular mechanism of B. licheniformis on the lipid metabolism and developmental growth of Pekin ducks through multiomics analysis, including transcriptomic and metabolomic analyses. Results: The results showed that compared with the control group, the addition of 400 mg/kg B. licheniformis could significantly increase the body weight of Pekin ducks and the content of triglyceride (p < 0.05), at the same time, the addition of B. licheniformis could affect the lipid metabolism of liver in Pekin ducks, and the addition of 400 mg/kg B. licheniformis could significantly increase the content of lipoprotein lipase in liver of Pekin ducks. Transcriptomic analysis revealed that the addition of B. licheniformis primarily impacted fatty acid and glutathione, amino acid metabolism, fatty acid degradation, as well as biosynthesis and elongation of unsaturated fatty acids. Metabolomic analysis indicated that B. licheniformis primarily affected the regulation of glycerol phospholipids, fatty acids, and glycerol metabolites. Multiomics analysis demonstrated that the addition of B. licheniformis to the diet of Pekin ducks enhanced the regulation of enzymes involved in fat synthesis via the PPAR signaling pathway, actively participating in fat synthesis and fatty acid transport. Discussion: We found that B. licheniformis effectively influences fat content and lipid metabolism by modulating lipid metabolism-associated enzymes in the liver. Ultimately, this study contributes to our understanding of how B. licheniformis can improve the growth performance of Pekin ducks, particularly in terms of fat deposition, thereby providing a theoretical foundation for its practical application. Conclusion: B. licheniformis can increase the regulation of enzymes related to fat synthesis through PPAR signal pathway, and actively participate in liver fat synthesis and fatty acid transport, thus changing the lipid metabolism of Pekin ducks, mainly in the regulation of glycerol phospholipids, fatty acids and glycerol lipid metabolites.
Collapse
Affiliation(s)
- Lei Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- College of Animal Veterinary Medicine, China Agricultural University, Beijing, China
| | - Liangyu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Limei Zhang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Fengping He
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhaofei Xia
- College of Animal Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bin Xiang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Cao X, Yuan R, Sun D, Ji X, Wei Y, Li L, Guo S, Li B, Chen J. Assessment of the therapeutic potential of probiotics against carbon quantum dots-induced neurotoxicity in common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106508. [PMID: 37001197 DOI: 10.1016/j.aquatox.2023.106508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Carbon quantum dots (CQDs) have received increasing attention in recent years for their potential toxicity. However, little is known about their neurobehavioral toxicity. This study aimed to investigate the potential mechanisms by which probiotics reduce CQDs neurotoxicity from a brain-gut axis perspective by exposing carp to CQDs and/or probiotics for five weeks. The results showed that CQDs accumulation in the brain reduces the expression of blood-brain-barrier (BBB) related genes in carp, leading to brain damage. In addition, CQDs impaired motor behavior and inhibited acetylcholinesterase activity. These abnormalities were alleviated by probiotic supplementation. Microbiomic analysis showed that probiotics improved the imbalance of intestinal flora caused by CQDs and increased the abundance of Firmicutes. Serum metabolomic analysis showed that probiotic supplementation restored the abnormal metabolic levels associated with neurological, inflammatory, and apoptotic cell death caused by CQDs. Overall, probiotic supplementation improved the CQDs-induced changes in brain damage, gut microbiology, and systemic metabolism. These results suggests that CQDs may cause neurotoxicity via the brain-gut microbial axis.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Rongjie Yuan
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xinyu Ji
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yinyin Wei
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Baohua Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
3
|
Rosmarinic acid alone or in combination with Lactobacillus rhamnosus ameliorated ammonia stress in the rainbow trout, Oncorhynchus mykiss: growth, immunity, antioxidant defense and liver functions. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Rosmarinic acid (RS) and Lactobacillus rhamnosus (LR) were added singularly or in combination to rainbow trout (Oncorhynchus mykiss) diets to test their efficacy in the protection against ammonia stress. Fish (31.4±0.6 g) were randomly allocated to six groups in three replicates, as follows: T1: basic food as control, T2: LR with a concentration of 1.5 × 108 CFU/g, T3: LR with a concentration of 3 × 108 CFU/g, T4: 1 g RS/kg, T5: 3 g RS/kg, and T6: 1.5 × 108 CFU/g LR + 1 g RS/kg and T7: 3 × 108 CFU/g LR + 3 g RS/kg. After 60 days feeding, fish exposed to 0ammonia stress. After the feeding period, the supplemented fish had the highest final body weight (FW), weight gain (WG), and specific growth rate (SGR), and the lowest feed conversion ratio (FCR) as compared with the control group (P<0.05). Amylase, protease and lipase activities were noticed markedly higher in fish supplemented with 1.5 × 108 CFU/g LR + 1 g RS/kg and 1.5 × 108 CFU/g LR diets compared to the control (P<0.05). Generally, fish in supplemented diets, particularly T2 and T6 groups, had the highest lysozyme, alternative complement activity (ACH50), total Ig, nitroblue tetrazolium test (NBT), myeloperoxidase (MPO), complement component 3 (C3), complement component 4 (C4), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx). On the other hand, T2 and T6 groups had the lowest malondialdehyde (MDA), glucose, and cortisol concentrations as well as alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) enzyme levels when were compared with the control (P<0.05). After ammonia stress, fish in the supplemented groups, particularly T2 and T6, generally showed significantly higher values of lysozyme, ACH50, total Ig, NBT, MPO, C3, C4, SOD, CAT, GPx and lower levels of MDA, glucose, cortisol, ALT, ALP, LDH when compared with the control (P<0.05). In conclusion, a combined administration of RS and L. rhamnosus effectively improved growth performance and health status as well as enhanced the resistance of rainbow trout against ammonia toxicity.
Collapse
|
4
|
Xin WG, Li XD, Lin YC, Jiang YH, Xu MY, Zhang QL, Wang F, Lin LB. Whole genome analysis of host-associated lactobacillus salivarius and the effects on hepatic antioxidant enzymes and gut microorganisms of Sinocyclocheilus grahami. Front Microbiol 2022; 13:1014970. [PMID: 36386721 PMCID: PMC9648147 DOI: 10.3389/fmicb.2022.1014970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
As a fish unique to Yunnan Province in China, Sinocyclocheilus grahami hosts abundant potential probiotic resources in its intestinal tract. However, the genomic characteristics of the probiotic potential bacteria in its intestine and their effects on S. grahami have not yet been established. In this study, we investigated the functional genomics and host response of a strain, Lactobacillus salivarius S01, isolated from the intestine of S. grahami (bred in captivity). The results revealed that the total length of the genome was 1,737,623 bp (GC content, 33.09%), comprised of 1895 genes, including 22 rRNA operons and 78 transfer RNA genes. Three clusters of antibacterial substances related genes were identified using antiSMASH and BAGEL4 database predictions. In addition, manual examination confirmed the presence of functional genes related to stress resistance, adhesion, immunity, and other genes responsible for probiotic potential in the genome of L. salivarius S01. Subsequently, the probiotic effect of L. salivarius S01 was investigated in vivo by feeding S. grahami a diet with bacterial supplementation. The results showed that potential probiotic supplementation increased the activity of antioxidant enzymes (SOD, CAT, and POD) in the hepar and reduced oxidative damage (MDA). Furthermore, the gut microbial community and diversity of S. grahami from different treatment groups were compared using high-throughput sequencing. The diversity index of the gut microbial community in the group supplemented with potential probiotics was higher than that in the control group, indicating that supplementation with potential probiotics increased gut microbial diversity. At the phylum level, the abundance of Proteobacteria decreased with potential probiotic supplementation, while the abundance of Firmicutes, Actinobacteriota, and Bacteroidota increased. At the genus level, there was a decrease in the abundance of the pathogenic bacterium Aeromonas and an increase in the abundance of the potential probiotic bacterium Bifidobacterium. The results of this study suggest that L. salivarius S01 is a promising potential probiotic candidate that provides multiple benefits for the microbiome of S. grahami.
Collapse
Affiliation(s)
- Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Mei-Yu Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| |
Collapse
|
5
|
Ramirez-Olea H, Reyes-Ballesteros B, Chavez-Santoscoy RA. Potential application of the probiotic Bacillus licheniformis as an adjuvant in the treatment of diseases in humans and animals: A systematic review. Front Microbiol 2022; 13:993451. [PMID: 36225361 PMCID: PMC9549136 DOI: 10.3389/fmicb.2022.993451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The use of Bacillus licheniformis as a probiotic has increased significantly in recent years. Published reports demonstrate that it provides multiple benefits for health. Although there are already studies in humans and is marketed, it is mostly used in the veterinary industry still. However, its benefits could be extrapolated to humans in future. This review addresses the application of B. licheniformis, its sporulation, mechanisms of action, and its role in the resolution, treatment, and prevention of different conditions and diseases. It focuses on scientific advances from 2016 to mid-2022 and emphasizes the most common diseases in the general population. Most of the 70% of published studies about the health benefits of B. licheniformis have been published from 2016 until now. The intake of B. licheniformis has been related to the effects of modulation of the intestinal microbiota, antimicrobial activity, growth promotion, anti-inflammatory and immunostimulatory effects, promotion of the regulation of the lipid profile, increase of neurotransmitters, and stress reduction, among others. These results provide novel possible applications of this and other probiotics in general. Although many benefits can be reported on a microorganism, the combination with others could provide a better effect. Further studies like this need to be done to understand the specific advantages of each probiotic and its strains and therefore achieve a better selection of them for a specific disease or disorder.
Collapse
Affiliation(s)
- Hugo Ramirez-Olea
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Monterrey, NL, Mexico
| | - Bernardo Reyes-Ballesteros
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Estado de México, Ciudad López Mateos, MX, Mexico
| | - Rocio Alejandra Chavez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Monterrey, NL, Mexico
- *Correspondence: Rocio Alejandra Chavez-Santoscoy,
| |
Collapse
|