1
|
Palacios-Valladares JR, Martinez-Jimenez YI, Morillon-Torres V, Rivera-Maya OB, Gómez R, Calderon-Aranda ES. Bisphenol A and Its Emergent Substitutes: State of the Art of the Impact of These Plasticizers on Oxidative Stress and Its Role in Vascular Dysfunction. Antioxidants (Basel) 2024; 13:1468. [PMCID: PMC11673293 DOI: 10.3390/antiox13121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
The “One Health approach” has evidenced the significant impact of xenobiotic exposure to health, and humans are a relevant target for their toxic effects. Bisphenol A (BPA) exerts a ubiquitous exposure source in all ecosystems. Given its endocrine-disrupting and harmful consequences on health, several countries have enforced new regulations to reduce exposure to BPA. Cardiovascular diseases (CVDs) are complex conditions that lead to higher mortality worldwide, where family history, lifestyle, and environmental factors, like BPA exposure, have a remarkable contribution. This chemical compound is the most widely used in plastic and epoxy resin manufacturing and has been associated with effects on human health. Therefore, new-generation bisphenols (NGBs) are replacing BPA use, arguing that they do not harm health. Nonetheless, the knowledge about whether NGBs are secure options is scanty. Although BPA’s effects on several organs and systems have been documented, the role of BPA and NGBs in CVDs has yet to be explored. This review’s goals are focused on the processes of endothelial activation (EA)–endothelial dysfunction (ED), a cornerstone of CVDs development, bisphenols’ (BPs) effects on these processes through oxidant and antioxidant system alteration. Despite the scarce evidence on pro-oxidant effects associated with NGBs, our review demonstrated a comparable harmful effect on BPA. The results from the present review suggest that the biological mechanisms to explain BPs cardiotoxic effects are the oxidant stress ↔ inflammatory response ↔ EA ↔ ED → atherosclerotic plate → coagulation promotion. Other effects contributing to CVD development include altered lipid metabolism, ionic channels, and the activation of different intracellular pathways, which contribute to ED perpetuation in a concerted manner.
Collapse
Affiliation(s)
| | | | | | | | - Rocio Gómez
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| | - Emma S. Calderon-Aranda
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| |
Collapse
|
2
|
Zhou S, Wang X, Huang Y, Liu Y, Zheng Y, Chu P, Zhu L, Xu X. Bisphenol A induces lipid metabolism disorder and impairs hepatopancreas of Sesarmops sinensis. MARINE POLLUTION BULLETIN 2024; 208:117058. [PMID: 39357365 DOI: 10.1016/j.marpolbul.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Bisphenol A (BPA) is a chemical that disrupts the endocrine system and may have negative implications on the lipid metabolism of organisms. To ascertain BPA implications on lipid metabolism in the hepatopancreas of Sesarmops sinensis, we exposed S. sinensis to different concentrations of BPA for 14 days. The outcomes manifested that BPA may stimulate hepatopancreas injury and lipid deposition in the hepatopancreas of S. sinensis and lead to the increase of hepatosomatic index (HSI). Transcriptome analysis showed that lipid metabolism-related pathways were significantly enriched in KEGG pathways. BPA exposure also caused disorders in lipid metabolism by altering fatty acid composition and lipid metabolites. The up-regulation of lipid synthesis genes and the alteration of lipid transport genes may be important reasons for the disorder of lipid metabolism. Furthermore, these outcomes provide a fresh point of reference for comprehending the ecotoxicological impacts of BPA on aquatic organisms.
Collapse
Affiliation(s)
- Shangjie Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xiaotian Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yutong Huang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yan Liu
- School of Ocean, Yantai University, Yantai, Shandong 264000, China
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Long Zhu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| | - Xinghong Xu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
3
|
Santana Rodriguez KJ, Villeneuve DL, Cavallin JE, Blackwell BR, Hoang J, Hofer RN, Jensen KM, Kahl MD, Kutsi RN, Stacy E, Morshead ML, Ankley GT. Examining effects of a novel estrogenic perfluoro-alcohol, 1H,1H,8H,8H-Perfluorooctane-1,8-diol (FC8-diol), using the fathead minnow EcoToxChip. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38961679 DOI: 10.1002/etc.5937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024]
Abstract
In a previous in vivo study, adult male fathead minnows (Pimephales promelas) were exposed via water for 4 days to 1H,1H,8H,8H-perfluorooctane-1,8-diol (FC8-diol). The present study expands on the evaluation of molecular responses to this perfluoro-alcohol by analyzing 26 male fathead minnow liver RNA samples from that study (five from each test concentration: 0, 0.018, 0.051, 0.171, and 0.463 mg FC8-diol/L) using fathead minnow EcoToxChips Ver. 1.0. EcoToxChips are a quantitative polymerase chain reaction array that allows for simultaneous measurement of >375 species-specific genes of toxicological interest. Data were analyzed with the online tool EcoToxXplorer. Among the genes analyzed, 62 and 96 were significantly up- and downregulated, respectively, by one or more FC8-diol treatments. Gene expression results from the previous study were validated, showing an upregulation of vitellogenin mRNA (vtg) and downregulation of insulin-like growth factor 1 mRNA (igf1). Additional genes related to estrogen receptor activation including esr2a (estrogen receptor 2a) and esrrb (estrogen related receptor beta) were also affected, providing further confirmation of the estrogenic nature of FC8-diol. Furthermore, genes involved in biological pathways related to lipid and carbohydrate metabolism, innate immune response, endocrine reproduction, and endocrine thyroid were significantly affected. These results both add confidence in the use of the EcoToxChip tool for inferring chemical mode(s) of action and provide further insights into the possible biological effects of FC8-diol. Environ Toxicol Chem 2024;00:1-9. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Kelvin J Santana Rodriguez
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Duluth, Minnesota
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Jenna E Cavallin
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Brett R Blackwell
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - John Hoang
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Duluth, Minnesota
| | - Rachel N Hofer
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Kathleen M Jensen
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Michael D Kahl
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Robin N Kutsi
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Duluth, Minnesota
| | - Emma Stacy
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Mackenzie L Morshead
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Duluth, Minnesota
| | - Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| |
Collapse
|
4
|
Wang H, Liu J, Qiang S, Che Y, Hu T. 4-tert-Butylphenol impairs the liver by inducing excess liver lipid accumulation via disrupting the lipid metabolism pathway in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124385. [PMID: 38897274 DOI: 10.1016/j.envpol.2024.124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Endocrine disrupting chemicals (EDCs) can disrupt normal endocrine function by interfering with the synthesis and release of hormones, causing adverse reactions to development, immunity, nerves, and reproduction. 4-tert-Butylphenol (4-t-BP) is disruptive to early zebrafish development, but its effects on zebrafish liver are unknown. In this study, the adverse effects of 4-t-BP on the liver were investigated using zebrafish as a model organism. 4-t-BP inhibited liver development in zebrafish embryos and induced liver damage in adult zebrafish. Even if F1 was not directly exposed to 4-t-BP, its growth and development were inhibited. 4-t-BP can lead to an increase in lipid accumulation, total cholesterol and triglycerides contents, and the activities of alanine transaminase and aspartate aminotransferase in zebrafish embryos and adult zebrafish livers, and also cause an acceleration of glucose metabolism in zebrafish embryos. In addition, qRT-PCR showed that 4-t-BP induced the changes in the expressions of liver development-, steroid and unsaturated fatty acid biosynthesis-, and glycerolipid and arachidonic acid metabolism-related genes in zebrafish embryos and inflammatory factors-, antioxidant enzymes- and lipid metabolism-related genes in adult zebrafish livers. Transcriptome sequencing of embryos showed that 4-t-BP altered the expressions of lipid metabolism pathways such as steroid and unsaturated fatty acid biosynthesis, glycerolipid, and arachidonic acid metabolism pathways. Therefore, 4-t-BP may be external stimuli that cause oxidative stress, inflammation, and lipid accumulation in zebrafish liver, resulting in tissue damage and dysfunction in zebrafish liver.
Collapse
Affiliation(s)
- Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Shuting Qiang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yufeng Che
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
5
|
Weng Y, Gu W, Jin Y. Epoxiconazole altered hepatic metabolism in adult zebrafish based on transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109901. [PMID: 38508352 DOI: 10.1016/j.cbpc.2024.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Epoxiconazole (EPX) is a triazole fungicide, which has been widely used in pest control of cereal crops. However, its extensive use has led to concerning levels of residue in water bodies, posing substantial risks to aquatic life. In this study, we characterized the toxicological effects of EPX on 6-month-old male and female zebrafish at 70 and 700 μg/L, respectively. The results revealed that EPX exposure markedly increased both body length and weight in zebrafish of both sexes, consequently elevating their condition factor. Besides, EPX exposure resulted in notable alterations in hepatic histopathology. These changes included loosened hepatocyte structure, ballooning degeneration, nucleolysis, and disappearance of cell line, with male zebrafish exhibiting more severe damage. High concentration of EPX also significantly increased hepatic lipid accumulation in male zebrafish, as well as increased hepatic triglyceride (TG) levels. Correspondingly, there was a notable alteration in the transcription of genes including cyp51, hmgcr, and PPAR-γ, which associated with cholesterol and lipid metabolism. Interestingly, with the hepatic transcriptomic analysis, high concentration of EPX produced 195 upregulated and 107 downregulated differential expression genes. Both KEGG and GO analyses identified significant enrichment of these genes in lipid and amino acid metabolism pathways. Notably, some key genes involved in the steroid synthesis pathway were marked upregulated. In addition, molecular docking study confirmed that EPX could bind CYP51 protein well (△G = -7.7 kcal/mol). Taken together, these findings demonstrated the multiple toxic effects of EPX on adult zebrafish.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weijie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
6
|
Sudhakaran G, Priya PS, Haridevamuthu B, Murugan R, Kannan J, Almutairi MH, Almutairi BO, Guru A, Arockiaraj J. Mechanistic interplay of dual environmental stressors: Bisphenol-A and cadmium-induced ovarian follicular damage and hepatocyte dysfunction in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171706. [PMID: 38490420 DOI: 10.1016/j.scitotenv.2024.171706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
This study investigates the individual and combined toxic effects of Bisphenol A (BPA) and Cadmium (Cd) in zebrafish, recognizing the complex mixture of pollutants organisms encounter in their natural environment. Examining developmental, neurobehavioral, reproductive, and physiological aspects, the study reveals significant adverse effects, particularly in combined exposures. Zebrafish embryos exposed to BPA + Cd exhibit synergistically increased mortality, delayed hatching, and morphological abnormalities, emphasizing the heightened toxicity of the combination. Prolonged exposure until 10 days post-fertilization underscores enduring effects on embryonic development. BPA and Cd induce oxidative stress, as evidenced by increased production of reactive oxygen species and lipid peroxidation. This oxidative stress disrupts cellular functions, affecting lipid metabolism and immune response. Adult zebrafish exposed to BPA and Cd for 40 days display compromised neurobehavioral functions, altered antioxidant defenses, and increased oxidative stress, suggesting potential neurotoxicity. Additionally, disruptions in ovarian follicle maturation and skeletal abnormalities indicate reproductive and skeletal impacts. Histological analysis reveals significant liver damage, emphasizing the synergistic hepatotoxicity of BPA and Cd. Molecular assessments further demonstrate compromised cellular defense mechanisms, synaptic function, and elevated cellular stress and inflammation-related gene expression in response to combined exposures. Bioaccumulation analysis highlights differential tissue accumulation patterns. In conclusion, this study provides comprehensive insights into the multifaceted toxicological effects of BPA and Cd in zebrafish, raising concerns about potential adverse impacts on environmental ecosystems and human health.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Jagan Kannan
- Department of Biotechnology, SRM Arts and Science College, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cardiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Giommi C, Lombó M, Habibi HR, Rossi G, Basili D, Mangiaterra S, Ladisa C, Chemello G, Carnevali O, Maradonna F. The probiotic SLAB51 as agent to counteract BPA toxicity on zebrafish gut microbiota -liver-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169303. [PMID: 38135076 DOI: 10.1016/j.scitotenv.2023.169303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
A plethora of studies have so far described the toxic effects of bisphenol A (BPA) on organism health, highlighting the urgent need to find new strategies not only to reduce the presence of this toxicant but also to counteract its adverse effects. In this context, probiotics emerged as a potential tool since they promote organism welfare. Using a multidisciplinary approach, this study explores the effects of SLAB51 dietary administration to counteract BPA toxicity using zebrafish as a model. Adult males and females were maintained under standard conditions (control group; C), exposed for 28 days via the water to an environmental relevant dose of BPA (10 μg/L; BPA), dietary treated with SLAB51 (109 CFU/g of body weight; P) and co-treated with BPA plus SLAB51 (BPA + P). In the gut, exposure to BPA resulted in altered architecture in both males and females, with females also experiencing an increase of pathogenic bacterial species. Co-administration of BPA + P led to the restoration of normal gut architecture, favored beneficial bacteria colonization, and decreased the abundance of pathogenic species. In the liver, male BPA exposure led to steatosis and glycogen depletion, which was partially mitigated by SLAB51 co-administration. In contrast, in females exposed to BPA, the lack of steatosis along with the greater glycogen depletion, suggested an increase in energy demand as supported by the metabolomic phenotype. The analysis of liver metabolites in BPA + P males revealed increased levels of anserine and reduced levels of glutamine, which could lie behind the counteraction of the brain histopathological damage caused by BPA. In BPA + P females, a reduction of retinoic acid was found in the liver, suggesting an increase in retinoids responsible for BPA detoxification. Overall, these results demonstrate that SLAB51 exerts its beneficial effects on the gut microbiota-brain-liver axis through distinct molecular pathways, effectively mitigating the pleiotropic toxicity of BPA.
Collapse
Affiliation(s)
- Christian Giommi
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| | - Marta Lombó
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy; Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain.
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica (MC), Italy.
| | - Danilo Basili
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica (MC), Italy.
| | - Claudia Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Giulia Chemello
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| |
Collapse
|
8
|
Chen P, Hu Y, Chen G, Zhao N, Dou Z. Probing the bioconcentration and metabolism disruption of bisphenol A and its analogues in adult female zebrafish from integrated AutoQSAR and metabolomics studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167011. [PMID: 37704156 DOI: 10.1016/j.scitotenv.2023.167011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Plenty of emerging bisphenol A (BPA) substitutes rise to wait for assessment of bioconcentration and metabolism disruption. Computational methods are useful to fill the data gap in chemical risk assessment, such as automated quantitative structure-activity relationship (AutoQSAR). It is not clear how AutoQSAR performs in predicting the bioconcentration factor (BCF) in adult zebrafish. Herein, AutoQSAR was used to predict the logBCFs of BPA, bisphenol AF (BPAF), bisphenol B, bisphenol F and bisphenol S (BPS). For the test set, a linear relationship was shown between the observed and predicted logBCFs with a slope of 0.97. The predicted logBCFs of these five bisphenols were quite close to their experimental data with a slope of 0.94, suggesting better performance than directed message passing neural networks and EPI Suite with a slope of 0.69 and 0.61, respectively. Thus, AutoQSAR is powerful in modeling logBCFs in fish with minimal time and expertise. To link bioconcentration with metabolic effects, female zebrafish were exposed to BPA, BPAF and BPS for metabolomics analysis. BPA caused a significant disturbance in amino acid metabolism, while BPAF and BPS significantly altered another three metabolic pathways, showing chemical-specific responses. BPAF with the highest logBCF elicited the strongest metabolomic responses reflected by the metabolic effect level index, followed by BPA and BPS. Thus, BPAF and BPS elicited higher or similar metabolism disruption compared with BPA in female zebrafish, respectively, reflecting consequences of bioconcentration.
Collapse
Affiliation(s)
- Pengyu Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China.
| | - Yuxi Hu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Geng Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| | - Na Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Zhichao Dou
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| |
Collapse
|