1
|
Nocini R, Favaloro EJ, Sanchis-Gomar F, Lippi G. Periodontitis, coronary heart disease and myocardial infarction: treat one, benefit all. Blood Coagul Fibrinolysis 2020; 31:339-345. [PMID: 32815910 DOI: 10.1097/mbc.0000000000000928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
: Periodontal disease is conventionally defined as an inflammatory condition affecting the tissues surrounding and supporting the teeth (i.e. gum and periodontium). Recent statistics show that the prevalence of this condition is continuously growing worldwide, thus raising severe healthcare concerns, not only for local problems emerging from poor oral health, but also for the potential risk of developing systemic complications. Therefore, this article aims to provide an update on the intriguing association between periodontitis, coronary heart disease (CHD) and/or myocardial infarction (MI). Taken together, the available published information seems to support the existence of a significant association between periodontitis and CHD, whilst the risk of acute ischemic cardiac events appears magnified in patients with preexisting coronary artery disease. This epidemiological link is supported by reliable biological evidence, showing that periodontal disease may unfavourably modulate the cardiovascular risk, whereby patients with periodontitis have increased frequency of overweight, hypertension, endothelial dysfunction, dyslipidaemia, platelet hyper-reactivity, and may also be characterized by a prothrombotic state. Apart from these critical atherogenic factors, translocation of periodontal microorganisms into the bloodstream, and their further accumulation within atherosclerotic plaques, would contribute to enhance plaque instability and the risk of developing acute ischemic coronary events. Interesting evidence is also emerging that local or systemic statins administration could be beneficial for safeguarding periodontal health, thus enlightening the intriguing relationship existing between CHD and periodontitis.
Collapse
Affiliation(s)
- Riccardo Nocini
- Section of Ears, Nose and Throat (ENT), Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Emmanuel J Favaloro
- Haematology, Sydney Centers for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Stulnig TM, Morozzi C, Reindl-Schwaighofer R, Stefanutti C. Looking at Lp(a) and Related Cardiovascular Risk: from Scientific Evidence and Clinical Practice. Curr Atheroscler Rep 2019; 21:37. [PMID: 31350625 DOI: 10.1007/s11883-019-0803-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW A considerable body of data from genetic and epidemiological studies strongly support a causal relationship between high lipoprotein(a) [Lp(a)] levels, and the development of atherosclerosis and cardiovascular disease. This relationship is continuous, unrelated to Lp(a) threshold, and independent of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol levels. Unfortunately, the mechanism(s) through which Lp(a) promotes atherosclerosis are not clarified yet. Suggested hypotheses include: an increased Lp(a)-associated cholesterol entrapment in the arterial intima followed by inflammatory cell recruitment, abnormal upload of proinflammatory oxidized phospholipids, impaired fibrinolysis by inhibition of plasminogen activation, and enhanced coagulation, through inhibition of the tissue factor pathway inhibitor. This review is aimed at summarizing the available evidence on the topic. RECENT FINDINGS There are two clinical forms, isolated hyperlipidemia(a) [HyperLp(a)] with acceptable LDL-C levels (< 70 mg/dL), and combined elevation of Lp(a) and LDL-C in plasma. To date, no drugs that selectively decrease Lp(a) are available. Some novel lipid-lowering drugs can lower Lp(a) levels, but to a limited extent, as their main effect is aimed at decreasing LDL-C levels. Significant Lp(a) lowering effects were obtained with nicotinic acid at high doses. However, adverse effects apart, nicotinic acid is no longer prescribed and available in Europe for clinical use, after European Agency of Medicines (EMA) ban. The only effective therapeutic option for now is Lipoprotein Apheresis (LA), albeit with some limitations. Lastly, it is to be acknowledged that the body of evidence confirming that reducing plasma isolated elevation of Lp(a) brings cardiovascular benefit is still insufficient. However, the growing bulk of clinical, genetic, mechanistic, and epidemiological available evidence strongly suggests that Lp(a) is likely to be the smoking gun.
Collapse
Affiliation(s)
- Thomas M Stulnig
- Clinical Division of Endocrinology and Metabolism - Department of Medicine III - Medical University of Vienna, Universitätsring 1, 1010, Wien, Austria
| | - Claudia Morozzi
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre -"Sapienza" University of Rome, Extracorporeal Therapeutic Techniques Unit, Regional Centre for Rare Diseases, Immunohematology and Transfusion Medicine, "Umberto I" Hospital, Rome, Italy
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Wien, Austria
| | - Claudia Stefanutti
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre -"Sapienza" University of Rome, Extracorporeal Therapeutic Techniques Unit, Regional Centre for Rare Diseases, Immunohematology and Transfusion Medicine, "Umberto I" Hospital, Rome, Italy.
| |
Collapse
|
3
|
Momtazi-Borojeni AA, Katsiki N, Pirro M, Banach M, Rasadi KA, Sahebkar A. Dietary natural products as emerging lipoprotein(a)-lowering agents. J Cell Physiol 2019; 234:12581-12594. [PMID: 30637725 DOI: 10.1002/jcp.28134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Elevated plasma lipoprotein(a) (Lp(a)) levels are associated with an increased risk of cardiovascular disease (CVD). Hitherto, niacin has been the drug of choice to reduce elevated Lp(a) levels in hyperlipidemic patients but its efficacy in reducing CVD outcomes has been seriously questioned by recent clinical trials. Additional drugs may reduce to some extent plasma Lp(a) levels but the lack of a specific therapeutic indication for Lp(a)-lowering limits profoundly reduce their use. An attractive therapeutic option is natural products. In several preclinical and clinical studies as well as meta-analyses, natural products, including l-carnitine, coenzyme Q 10 , and xuezhikang were shown to significantly decrease Lp(a) levels in patients with Lp(a) hyperlipoproteinemia. Other natural products, such as pectin, Ginkgo biloba, flaxseed, red wine, resveratrol and curcuminoids can also reduce elevated Lp(a) concentrations but to a lesser degree. In conclusion, aforementioned natural products may represent promising therapeutic agents for Lp(a) lowering.
Collapse
Affiliation(s)
- Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Nanotechnology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Khalid Al Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Salvagno GL, Pavan C, Lippi G. Rare thrombophilic conditions. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:342. [PMID: 30306081 DOI: 10.21037/atm.2018.08.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thrombophilia, either acquired or inherited, can be defined as a predisposition to developing thromboembolic complications. Since the discovery of antithrombin deficiency in the 1965, many other conditions have been described so far, which have then allowed to currently detect an inherited or acquired predisposition in approximately 60-70% of patients with thromboembolic disorders. These prothrombotic risk factors mainly include qualitative or quantitative defects of endogenous coagulation factor inhibitors, increased concentration or function of clotting proteins, defects in the fibrinolytic system, impaired platelet function, and hyperhomocysteinemia. In this review article, we aim to provide an overview on epidemiologic, clinic and laboratory aspects of both acquired and inherited rare thrombophilic risk factors, especially including dysfibrinogenemia, heparin cofactor II, thrombomodulin, lipoprotein(a), sticky platelet syndrome, plasminogen activator inhibitor-1 apolipoprotein E, tissue factor pathway inhibitor, paroxysmal nocturnal haemoglobinuria and heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
| | - Chiara Pavan
- Division of Geriatric Medicine, Mater Salutis Hospital, Legnago, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Sun L, Zong M, Chen C, Xie L, Wu F, Yu M, Fan L. Low LPA gene kringle IV-2 repeat copy number association with elevated lipoprotein (a) concentration as an independent risk factor of coronary atherosclerotic heart disease in the Chinese Han population. Lipids Health Dis 2018; 17:111. [PMID: 29747697 PMCID: PMC5946444 DOI: 10.1186/s12944-018-0753-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background Lipoprotein (a) [Lp(a)], which is genetically determined by the LPA gene kringle IV type 2 (KIV-2) repeat copy number, has previously been reported in different populations. However, it is uncertain if the same occurs in the Chinese Han population. This study explored the correlation of Lp(a) mass or particle concentration with KIV-2 repeat copy number and application for coronary atherosclerotic heart disease (CAHD) risk assessment. Methods A cross-sectional study including 884 subjects was conducted. The Lp(a) level and routine risk factors of CAHD were compared. The KIV-2 copy number distribution, relationship with Lp(a), and assessment for CAHD risk were explored. Results The mean of Lp(a) mass or particle concentration in the CAHD group was higher than that in the non-CAHD group, while the KIV-2 copy number in the CAHD group was lower. Lp(a) had auxiliary values in gauging the type of plaque and was significantly higher in the soft-plaque group than that in the other two groups (200 mg/L [21.5 nmol/L], 166 mg/L [18.6 nmol/L], 149 mg/L [17.1 nmol/L], respectively, P < 0.05). Kappa test indicated divergence for the same individual using two Lp(a) concentrations (kappa value was 0.536 [< 0.75]). Elevated Lp(a) was an independent CAHD risk factor, whatever mass or particle concentration, and large KIV-2 copy number was a protective factor. Conclusion Lp(a) level and small KIV-2 copy number are risk factors for CAHD in the Chinese Han population; furthermore, elevated Lp(a) may gauge the type of coronary plaque.
Collapse
Affiliation(s)
- Lishan Sun
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120, People's Republic of China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120, People's Republic of China
| | - Cuncun Chen
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120, People's Republic of China
| | - Lihong Xie
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120, People's Republic of China
| | - Fei Wu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120, People's Republic of China
| | - Ming Yu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120, People's Republic of China
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
6
|
Update on the laboratory investigation of dyslipidemias. Clin Chim Acta 2018; 479:103-125. [PMID: 29336935 DOI: 10.1016/j.cca.2018.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 01/08/2023]
Abstract
The role of the clinical laboratory is evolving to provide more information to clinicians to assess cardiovascular disease (CVD) risk and target therapy more effectively. Current routine methods to measure LDL-cholesterol (LDL-C), the Friedewald calculation, ultracentrifugation, electrophoresis and homogeneous direct methods have established limitations. Studies suggest that LDL and HDL size or particle concentration are alternative methods to predict future CVD risk. At this time there is no consensus role for lipoprotein particle or subclasses in CVD risk assessment. LDL and HDL particle concentration are measured by several methods, namely gradient gel electrophoresis, ultracentrifugation-vertical auto profile, nuclear magnetic resonance and ion mobility. It has been suggested that HDL functional assays may be better predictors of CVD risk. To assess the issue of lipoprotein subclasses/particles and HDL function as potential CVD risk markers robust, simple, validated analytical methods are required. In patients with small dense LDL particles, even a perfect measure of LDL-C will not reflect LDL particle concentration. Non-HDL-C is an alternative measurement and includes VLDL and CM remnant cholesterol and LDL-C. However, apolipoprotein B measurement may more accurately reflect LDL particle numbers. Non-fasting lipid measurements have many practical advantages. Defining thresholds for treatment with new measurements of CVD risk remain a challenge. In families with genetic variants, ApoCIII and lipoprotein (a) may be additional risk factors. Recognition of familial causes of dyslipidemias and diagnosis in childhood will result in early treatment. This review discusses the limitations in current laboratory technologies to predict CVD risk and reviews the evidence for emergent approaches using newer biomarkers in clinical practice.
Collapse
|
7
|
Kotani K, Sahebkar A, Serban MC, Ursoniu S, Mikhailidis DP, Mariscalco G, Jones SR, Martin S, Blaha MJ, Toth PP, Rizzo M, Kostner K, Rysz J, Banach M. Lipoprotein(a) Levels in Patients With Abdominal Aortic Aneurysm. Angiology 2016; 68:99-108. [PMID: 26980774 DOI: 10.1177/0003319716637792] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Circulating markers relevant to the development of abdominal aortic aneurysm (AAA) are currently required. Lipoprotein(a), Lp(a), is considered a candidate marker associated with the presence of AAA. The present meta-analysis aimed to evaluate the association between circulating Lp(a) levels and the presence of AAA. The PubMed-based search was conducted up to April 30, 2015, to identify the studies focusing on Lp(a) levels in patients with AAA and controls. Quantitative data synthesis was performed using a random effects model, with standardized mean difference (SMD) and 95% confidence interval (CI) as summary statistics. Overall, 9 studies were identified. After a combined analysis, patients with AAA were found to have a significantly higher level of Lp(a) compared to the controls (SMD: 0.87, 95% CI: 0.41-1.33, P < .001). This result remained robust in the sensitivity analysis, and its significance was not influenced after omitting each of the included studies from the meta-analysis. The present meta-analysis confirmed a higher level of circulating Lp(a) in patients with AAA compared to controls. High Lp(a) levels can be associated with the presence of AAA, and Lp(a) may be a marker in screening for AAA. Further studies are needed to establish the clinical utility of measuring Lp(a) in the prevention and management of AAA.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- 1 Division of Community and Family Medicine, Jichi Medical University, Shimotsuke-City, Japan
| | - Amirhossein Sahebkar
- 2 Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,3 Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Maria-Corina Serban
- 4 Discipline of Pathophysiology, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Sorin Ursoniu
- 5 Discipline of Public Health, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Dimitri P Mikhailidis
- 6 Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London, London, United Kingdom
| | - Giovanni Mariscalco
- 7 Department of Cardiovascular Sciences, University of Leicester Glenfield Hospital, Leicester, United Kingdom
| | - Steven R Jones
- 8 The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Seth Martin
- 8 The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Michael J Blaha
- 8 The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Peter P Toth
- 8 The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA.,9 Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Manfredi Rizzo
- 10 Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Karam Kostner
- 11 Mater Hospital, University of Queensland, St Lucia, Australia
| | - Jacek Rysz
- 12 Department of Hypertension, Nephrology and Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Poland
| | - Maciej Banach
- 12 Department of Hypertension, Nephrology and Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Poland
| | | |
Collapse
|
8
|
Kotani K, Serban MC, Penson P, Lippi G, Banach M. Evidence-based assessment of lipoprotein(a) as a risk biomarker for cardiovascular diseases - Some answers and still many questions. Crit Rev Clin Lab Sci 2016; 53:370-8. [PMID: 27173621 DOI: 10.1080/10408363.2016.1188055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present article is aimed at outlining the current state of knowledge regarding the clinical value of lipoprotein(a) (Lp(a)) as a marker of cardiovascular disease (CVD) risk by summarizing the results of recent clinical studies, meta-analyses and systematic reviews. The literature supports the predictive value of Lp(a) on CVD outcomes, although the effect size is modest. Lp(a) would also appear to have an effect on cerebrovascular outcomes, however the effect appears even smaller than that for CVD outcomes. Consideration of apolipoprotein(a) (apo(a)) isoforms and LPA genetics in relation to the simple assessment of Lp(a) concentration may enhance clinical practice in vascular medicine. We also describe recent advances in Lp(a) research (including therapies) and highlight areas where further research is needed such as the measurement of Lp(a) and its involvement in additional pathophysiological processes.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- a Division of Community and Family MedicinevJichi Medical University , Shimotsuke-City , Japan .,b Department of Clinical Laboratory Medicine , Jichi Medical University , Shimotsuke-City , Japan
| | - Maria-Corina Serban
- c Department of Epidemiology , University of Alabama at Birmingham , Birmingham , AL , USA .,d Department of Functional Sciences , Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy , Timisoara , Romania
| | - Peter Penson
- e Section of Clinical Biochemistry , School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool , UK
| | - Giuseppe Lippi
- f Section of Clinical Biochemistry , University of Verona , Verona , Italy , and
| | - Maciej Banach
- g Department of Hypertension , Chair of Nephrology and Hypertension, Medical University of Lodz , Lodz , Poland
| |
Collapse
|
9
|
Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454:143-85. [DOI: 10.1016/j.cca.2015.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
|
10
|
Serban MC, Sahebkar A, Mikhailidis DP, Toth PP, Jones SR, Muntner P, Blaha MJ, Andrica F, Martin SS, Borza C, Lip GYH, Ray KK, Rysz J, Hazen SL, Banach M. Impact of L-carnitine on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of randomized controlled trials. Sci Rep 2016; 6:19188. [PMID: 26754058 PMCID: PMC4709689 DOI: 10.1038/srep19188] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
We aimed to assess the impact of L-carnitine on plasma Lp(a) concentrations through systematic review and meta-analysis of available RCTs. The literature search included selected databases up to 31st January 2015. Meta-analysis was performed using fixed-effects or random-effect model according to I2 statistic. Effect sizes were expressed as weighted mean difference (WMD) and 95% confidence interval (CI). The meta-analysis showed a significant reduction of Lp(a) levels following L-carnitine supplementation (WMD: −8.82 mg/dL, 95% CI: −10.09, −7.55, p < 0.001). When the studies were categorized according to the route of administration, a significant reduction in plasma Lp(a) concentration was observed with oral (WMD: −9.00 mg/dL, 95% CI: −10.29, −7.72, p < 0.001) but not intravenous L-carnitine (WMD: −2.91 mg/dL, 95% CI: −10.22, 4.41, p = 0.436). The results of the meta-regression analysis showed that the pooled estimate is independent of L-carnitine dose (slope: −0.30; 95% CI: −4.19, 3.59; p = 0.878) and duration of therapy (slope: 0.18; 95% CI: −0.22, 0.59; p = 0.374). In conclusion, the meta-analysis suggests a significant Lp(a) lowering by oral L-carnitine supplementation. Taking into account the limited number of available Lp(a)-targeted drugs, L-carnitine might be an effective alternative to effectively reduce Lp(a). Prospective outcome trials will be required to fully elucidate the clinical value and safety of oral L-carnitine supplementation.
Collapse
Affiliation(s)
- Maria-Corina Serban
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- Preventive Cardiology, CGH Medical Center, Sterling, Illinois, USA.,The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Steven R Jones
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J Blaha
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Florina Andrica
- Faculty of Pharmacy, Discipline of Pharmaceutical Chemistry "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Seth S Martin
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Claudia Borza
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Kausik K Ray
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, UK
| | - Jacek Rysz
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| | - Stanley L Hazen
- Department for Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| |
Collapse
|
11
|
Yun JS, Lim TS, Cha SA, Ahn YB, Song KH, Choi JA, Kwon J, Jee D, Cho YK, Park YM, Ko SH. Lipoprotein(a) predicts the development of diabetic retinopathy in people with type 2 diabetes mellitus. J Clin Lipidol 2016; 10:426-33. [PMID: 27055974 DOI: 10.1016/j.jacl.2015.12.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/27/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Lipoprotein(a) [Lp(a)] has mainly been considered to be a predictor of the incidence of cardiovascular disease. In addition, previous studies have shown potential linkage between Lp(a) and diabetic microvascular complications. OBJECTIVES We investigated the incidence and risk factors for the development of diabetic retinopathy (DR) in patients with type 2 diabetes. METHODS A total of 787 patients with type 2 diabetes without DR were consecutively enrolled and followed up prospectively. Retinopathy evaluation was annually performed by ophthalmologists. The main outcome was new onset of DR. RESULTS The median follow-up time was 11.1 years. Patients in the DR group had a longer duration of diabetes (P < .001), higher baseline HbA1c (P < .001), higher albuminuria level (P = .033), and higher level of Lp(a) (P = .005). After adjusting for sex, age, diabetes duration, presence of hypertension, renal function, LDL cholesterol, mean HbA1c, and medications, the development of DR was significantly associated with the serum Lp(a) level (HR 1.57, 95% confidence interval [1.11-2.24]; P = .012, comparing the 4th vs 1st quartile of Lp(a)). The patient group with the highest quartile range of Lp(a) and mean HbA1c levels ≥7.0% had an HR of 5.09 (95% confidence interval [2.63-9.84]; P < .001) for developing DR compared with patients with lower levels of both factors. CONCLUSIONS In this prospective cohort study, we demonstrated that the DR was independently associated with the serum Lp(a) level in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Jae-Seung Yun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae-Seok Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seon-Ah Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Bae Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin A Choi
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jinwoo Kwon
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Donghyun Jee
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yang Kyung Cho
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong-Moon Park
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
12
|
|
13
|
Lippi G, Plebani M. False myths and legends in laboratory diagnostics. Clin Chem Lab Med 2013; 51:2087-97. [DOI: 10.1515/cclm-2013-0105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 11/15/2022]
|
14
|
A Systematic Literature Review of the Association of Lipoprotein(a) and Autoimmune Diseases and Atherosclerosis. Int J Rheumatol 2012; 2012:480784. [PMID: 23304154 PMCID: PMC3523136 DOI: 10.1155/2012/480784] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/05/2012] [Accepted: 09/05/2012] [Indexed: 12/23/2022] Open
Abstract
Objective. To investigate the association of lipoprotein(a) and atherosclerosis-related autoimmune diseases, to provide information on possible pathophysiologic mechanisms, and to give recommendations for Lp(a) determination and therapeutic options. Methods. We performed a systematic review of English language citations referring to the keywords "Lp(a)" AND "autoimmune disease" AND "atherosclerosis," "Lp(a)" AND "immune system" OR "antiphospholipid (Hughes) syndrome (APS)" OR "rheumatoid arthritis" OR "Sjögren's syndrome" OR "systemic lupus erythematosus" OR "systemic sclerosis" OR "systemic vasculitis" published between 1991 and 2011 using Medline database. Results. 22 out of 65 found articles were identified as relevant. Lp(a) association was highest in rheumatoid arthritis (RA), followed by systemic lupus erythematosus (SLE), moderate in APS and lowest in systemic sclerosis (SSc). There was no association found between Lp(a) and systemic vasculitis or Sjögren's syndrome. Conclusion. Immune reactions are highly relevant in the pathophysiology of atherosclerosis, and patients with specific autoimmune diseases are at high risk for CVD. Elevated Lp(a) is an important risk factor for premature atherosclerosis and high Lp(a) levels are also associated with autoimmune diseases. Anti-Lp(a)-antibodies might be a possible explanation. Therapeutic approaches thus far include niacin, Lp(a)-apheresis, farnesoid x-receptor-agonists, and CETP-inhibitors being currently under investigation.
Collapse
|
15
|
Lippi G, Favaloro EJ. Antisense therapy in the treatment of hypercholesterolemia. Eur J Intern Med 2011; 22:541-6. [PMID: 22075277 DOI: 10.1016/j.ejim.2011.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/30/2011] [Accepted: 06/29/2011] [Indexed: 12/01/2022]
Abstract
Cardiovascular disease, the leading causes of death worldwide, is a "preventable" pathology, so that accessible and affordable interventions should be established to target the leading risk factors, including hypercholesterolemia. Although statin based therapy is commonplace in primary and secondary prevention, several economical, clinical and safety issues have been raised, so that there is ongoing research into new, safer and more effective agents to be used alone or in combination with existing cardiovascular drugs. Antisense oligonucleotides (ASOs) are a class of short, single-stranded synthetic analogs of nucleic acids that bind to a target mRNA, preventing its translation and thereby inhibiting protein synthesis. Apolipoprotein B-100 (apoB-100) is the major protein moiety of the atherogenic lipoproteins LDL and Lp(a), thus representing the ideal target for antisense therapy. Two anti-apoB100 (i.e., ISIS 301012 and ISIS 147764) and one anti-apolipoprotein(a) (i.e., ASO 144367) have already been developed and tested in some animal and human trials, providing promising results in terms of significant reduction of both LDL and Lp(a). Nevertheless, some safety issues - especially injection-site reactions and potential hepatotoxicity - have also emerged, thereby slowing down the large clinical diffusion of these agents. The present article provides an update on clinical data regarding antisense therapy targeting human apolipoproteins, highlighting the benefits and the potential risks of this innovative therapeutic approach for hypercholesterolemia and hyperlipoproteinemia(a).
Collapse
Affiliation(s)
- Giuseppe Lippi
- U.O. Diagnostica Ematochimica, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | | |
Collapse
|