1
|
Aghaei M, Talari FS, Mollahosseini A, Keramati M. Validation of a high-performance liquid chromatography method for determining lysophosphatidylcholine content in bovine pulmonary surfactant medication. Biomed Chromatogr 2024; 38:e5926. [PMID: 38881378 DOI: 10.1002/bmc.5926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Pulmonary surfactant replacement therapy is a promising improvement in neonatal care for infants with respiratory distress syndrome. Lysophosphatidylcholine (LPC) is an undesirable component that can hinder surfactant proteins from enhancing the adsorption of surfactant lipids to balance surface tensions by creating a saturated coating on the interior of the lungs. A novel normal-phase liquid chromatography method utilizing UV detection and non-toxic solvents was developed and validated for the first time to analyze LPC in the complex matrix of pulmonary surfactant medication. The analytical method validation included evaluation of system suitability, repeatability, intermediate precision, linearity, accuracy, limit of detection (LOD), limit of quantification (LOQ), stability and robustness. The method yielded detection and quantification limits of 4.4 and 14.5 μg/ml, respectively. The calibration curve was modified linearly within the LOQ to 1.44 mg/ml range, with a determination coefficient of 0.9999 for standards and 0.9997 for sample solutions. Given the lack of reliable published data on LPC analysis in pulmonary surfactant medications, this newly developed method demonstrates promising results and offers advantages of HPLC methodology, including simplicity, accuracy, specificity, sensitivity and an exceptionally low LOD and LOQ. These attributes contribute to considering this achievement as an innovative method.
Collapse
Affiliation(s)
- Mahsa Aghaei
- ARC Bioassay (Iran Food and Drug Administration Accredited QC Laboratory of Biopharmaceutical Products), Tehran, Iran
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Faezeh Shirgaei Talari
- ARC Bioassay (Iran Food and Drug Administration Accredited QC Laboratory of Biopharmaceutical Products), Tehran, Iran
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Malihe Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Tang C, Tang F, Cai Y, Tan M, Liu S, Xie T, Jiang X, Huang Y. A pilot study of newborn screening for X-linked adrenoleukodystrophy based on liquid chromatography-tandem mass spectrometry method for detection of C26:0-lysophosphatidylcholine in dried blood spots: Results from 43,653 newborns in a southern Chinese population. Clin Chim Acta 2024; 552:117653. [PMID: 37977233 DOI: 10.1016/j.cca.2023.117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND X-linked adrenoleukodystrophy (X-ALD) is a rare X-linked disease caused by mutations of the ABCD1 gene. C26:0-lysophosphatidylcholine (C26:0-LPC) has been proved to be an accurate biomarker for X-ALD. This study aims to propose an effective method for screening of X-ALD and to evaluate the performance of the newborn screening (NBS) assay for X-ALD in Guangzhou. METHODS C26:0-LPC in dried blood spots (DBS) was extracted by methanol solution containing isotope-labelled internal standard (C26:0-d4-LPC) and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The sensitivity of the method was assessed in eight male X-ALD patients, two female carriers and 583 healthy controls. The method was conducted on 43,653 newborns. Next generation sequencing was performed on screen-positive samples. Plasma analysis of very long-chain fatty acids and genetic counselling were performed by way of follow-up. RESULTS Elevated C26:0-LPC were 100% sensitive for screening of X-ALD. Of 43,653 newborns, 32 (18 males, 14 females) screened positive. Of these, 14 (43.7%) were identified ABCD1 variants, including seven hemizygous males and seven heterozygous females, and two (6.3%) were diagnosed with other peroxisomal disorders. CONCLUSION The LC-MS/MS method for screening of X-ALD can identify males, heterozygous females and other peroxisomal disorders. The incidence of X-ALD in Guangzhou is not low.
Collapse
Affiliation(s)
- Chengfang Tang
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Fang Tang
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yanna Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Minyi Tan
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Sichi Liu
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Ting Xie
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiang Jiang
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yonglan Huang
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Helman G, Orthmann-Murphy JL, Vanderver A. Approaches to diagnosis for individuals with a suspected inherited white matter disorder. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:21-35. [PMID: 39322380 DOI: 10.1016/b978-0-323-99209-1.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Leukodystrophies are heritable disorders with white matter abnormalities observed on central nervous system magnetic resonance imaging. Pediatric leukodystrophies have long been known for their classically high, "unsolved" rate. Indeed, these disorders provide a diagnostic dilemma for many clinicians as over 100 genetic disorders alone may present with white matter abnormalities, with this figure not taking into account the substantial number of infectious agents, toxicities, and acquired disorders that may affect the white matter of the brain. Achieving a diagnosis may be the single most important step in the clinical course of a leukodystrophy-affected individual, with important implications for care and quality of life. For certain disorders, prompt recognition can direct therapeutic intervention with significant implications and requires urgent recognition. In this review, we cover newborn screening efforts, standard-of-care testing methodologies, and next generation sequencing approaches that continue to change the landscape of leukodystrophy diagnosis. Early studies have shown that next generation sequencing approaches, particularly exome and now genome sequencing have proven to be powerful in helping resolve many cases that were refractory to a single gene or linkage analysis approach. In addition, other methods are required for cases that remain persistently unsolved after next generation sequencing methods have been used. In the past more than half of affected individuals never achieved an etiologic diagnosis, and when they did, the reported times to diagnosis were >5 years although molecular testing has allowed this to be reduced to closer to 16 months. For affected families, next generation sequencing technologies have finally provided a way to fill gaps in diagnosis.
Collapse
Affiliation(s)
- Guy Helman
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer L Orthmann-Murphy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adeline Vanderver
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Wangler MF, Lesko B, Dahal R, Jangam S, Bhadane P, Wilson TE, McPheron M, Miller MJ. Dicarboxylic acylcarnitine biomarkers in peroxisome biogenesis disorders. Mol Genet Metab 2023; 140:107680. [PMID: 37567036 PMCID: PMC10840807 DOI: 10.1016/j.ymgme.2023.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The peroxisome is an essential eukaryotic organelle with diverse metabolic functions. Inherited peroxisomal disorders are associated with a wide spectrum of clinical outcomes and are broadly divided into two classes, those impacting peroxisome biogenesis (PBD) and those impacting specific peroxisomal factors. Prior studies have indicated a role for acylcarnitine testing in the diagnosis of some peroxisomal diseases through the detection of long chain dicarboxylic acylcarnitine abnormalities (C16-DC and C18-DC). However, there remains limited independent corroboration of these initial findings and acylcarnitine testing for peroxisomal diseases has not been widely adopted in clinical laboratories. To explore the utility of acylcarnitine testing in the diagnosis of peroxisomal disorders we applied a LC-MS/MS acylcarnitine method to study a heterogenous clinical sample set (n = 598) that included residual plasma specimens from nineteen patients with PBD caused by PEX1 or PEX6 deficiency, ranging in severity from lethal neonatal onset to mild late onset forms. Multiple dicarboxylic acylcarnitines were significantly elevated in PBD patients including medium to long chain (C8-DC to C18-DC) species as well as previously undescribed elevations of malonylcarnitine (C3-DC) and very long chain dicarboxylic acylcarnitines (C20-DC and C22-DC). The best performing plasma acylcarnitine biomarkers, C20-DC and C22-DC, were detected at elevated levels in 100% and 68% of PBD patients but were rarely elevated in patients that did not have a PBD. We extended our analysis to residual newborn screening blood spot cards and were able to detect dicarboxylic acylcarnitine abnormalities in a newborn with a PBD caused by PEX6 deficiency. Similar to prior studies, we failed to detect substantial dicarboxylic acylcarnitine abnormalities in blood spot cards from patients with x-linked adrenoleukodystrophy (x-ald) indicating that these biomarkers may have utility in quickly narrowing the differential diagnosis in patients with a positive newborn screen for x-ald. Overall, our study identifies widespread dicarboxylic acylcarnitine abnormalities in patients with PBD and highlights key acylcarnitine biomarkers for the detection of this class of inherited metabolic disease.
Collapse
Affiliation(s)
- Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States of America
| | - Barbara Lesko
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202, United States of America
| | - Rejwi Dahal
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202, United States of America
| | - Sharayu Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States of America
| | - Pradnya Bhadane
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States of America
| | - Theodore E Wilson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Molly McPheron
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Marcus J Miller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
5
|
Kilgore M, Platis D, Lim T, Isenberg S, Pickens CA, Cuthbert C, Petritis K. Development of a Universal Second-Tier Newborn Screening LC-MS/MS Method for Amino Acids, Lysophosphatidylcholines, and Organic Acids. Anal Chem 2023; 95:3187-3194. [PMID: 36724346 PMCID: PMC9933048 DOI: 10.1021/acs.analchem.2c03098] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
First-tier MS-based newborn screening by flow injection analysis can have high presumptive positive rates, often due to isomeric/isobaric compounds or poor biomarker specificity. These presumptive positive samples can be analyzed by second-tier screening assays employing separations such as liquid chromatography-mass spectrometry (LC-MS/MS), which increases test specificity and drastically reduces false positive referrals. The ability to screen for multiple disorders in a single multiplexed test simplifies workflows and maximizes public health laboratories' resources. In this study, we developed and validated a highly multiplexed second-tier method for dried blood spots using a hydrophilic interaction liquid chromatography (HILIC) column coupled to an MS/MS system. The LC-MS/MS method was capable of simultaneously detecting second-tier biomarkers for maple syrup urine disease, homocystinuria, methylmalonic acidemia, propionic acidemia, glutaric acidemia type 1, glutaric acidemia type 2, guanidinoacetate methyltransferase deficiency, short-chain acyl-CoA dehydrogenase deficiency, adrenoleukodystrophy, and Pompe disease.
Collapse
Affiliation(s)
- Matthew
B. Kilgore
- Newborn
Screening and Molecular Biology Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Dimitrios Platis
- Department
of Newborn Screening, Institute of Child
Health, Athens 115 26, Greece
| | - Timothy Lim
- Newborn
Screening and Molecular Biology Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Samantha Isenberg
- Newborn
Screening and Molecular Biology Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - C. Austin Pickens
- Newborn
Screening and Molecular Biology Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Carla Cuthbert
- Newborn
Screening and Molecular Biology Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Konstantinos Petritis
- Newborn
Screening and Molecular Biology Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States,
| |
Collapse
|
6
|
Chien YH, Hwu WL. The modern face of newborn screening. Pediatr Neonatol 2023; 64 Suppl 1:S22-S29. [PMID: 36481189 DOI: 10.1016/j.pedneo.2022.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) has been developed for years to identify newborns with severe but treatable conditions. Taiwan's NBS system, after the initial setup for a total coverage of newborns in 1990s, was later optimized to ensure the timely return of results in infants with abnormal results. Advancements in techniques such as Tandem mass spectrometry enable the screening into a multiplex format and increase the conditions to be screened. Furthermore, advances in therapies, such as enzyme replacement therapy, stem cell transplantation, and gene therapy, significantly expand the needs for newborn screening. Advances in genomics and biomarkers discovery improve the test accuracy with the assistance of second-tier tests, and have the potential to be the first-tier test in the future. Therefore, challenge of NBS now is the knowledge gap, including the evidence of the long-term clinical benefits in large cohorts especially in conditions with new therapies, phenotypic variations and the corresponding management of some screened diseases, and cost-effectiveness of extended NBS programs. A short-term and a long-term follow-up program should be implemented to gather those outcomes better especially in the genomic era. Ethical and psychosocial issues are also potentially encountered frequently. Essential education and better informed consent should be considered fundamental to parallel those new tests into future NBS.
Collapse
Affiliation(s)
- Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
7
|
Natarajan A, Christopher R. Age and gender-specific reference intervals for a panel of lysophosphatidylcholines estimated by tandem mass spectrometry in dried blood spots. Pract Lab Med 2022; 33:e00305. [PMID: 36618341 PMCID: PMC9813575 DOI: 10.1016/j.plabm.2022.e00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/03/2022] [Accepted: 12/16/2022] [Indexed: 12/26/2022] Open
Abstract
Background and objectives Very long-chain fatty acyl-lysophosphatidylcholines (VLCFA-LysoPCs) are measured in dried blood spots (DBS) for identifying X-linked adrenoleukodystrophy (X-ALD) and other inherited peroxisomal disorders. Our study aimed to establish age- and gender-specific reference intervals for a panel of LysoPCs measured by tandem mass spectrometry in DBS. Methods LysoPCs (26:0-, 24:0-, 22:0- and 20:0-LysoPCs) were estimated by flow injection analysis-tandem mass spectrometry (FIA-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods in 3.2 mm blood spots of 2689 anonymized, putative normal subjects (1375 males, and 1314 females) aged between 2 days and 65 years. Samples were divided into groups: Neonates (0-1month), Infants (>1m-1year), Children and Adolescents (>1-18years), and Adults (>18years). Reference intervals were determined using the percentile approach and represented as the median with the 1st and 99th percentile lower and upper limits. Results The percentage coefficient of variation (CV) for repeatability assays of internal and external quality control samples were within acceptable limits. Significant differences (P <0.0001, P <0.01) were observed in the concentrations of 26:0-, 24:0-, 22:0- and 20:0-LysoPCs and their ratios, 26:0/22:0-, 24:0/22:0-, 26:0/20:0-and 24:0/20:0-LysoPC in neonates and infants when compared to children, adolescents, and adults. Levels of 26:0-, 24:0- and 22:0-LysoPCs decreased, whereas 20:0-LysoPC increased with age. There were no significant gender-based differences in the concentration of LysoPCs. Conclusion We established age- and gender-specific reference intervals for a panel of LysoPCs in DBS. These reference values would be helpful when interpreting LysoPC values in DBS during screening for X-ALD and other peroxisomal disorders.
Collapse
Affiliation(s)
- Archana Natarajan
- Metabolic Laboratory, Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Rita Christopher
- Metabolic Laboratory, Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India,Corresponding author. Department of Neurochemistry National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
8
|
Teber TA, Conti BJ, Haynes CA, Hietala A, Baker MW. Newborn Screen for X-Linked Adrenoleukodystrophy Using Flow Injection Tandem Mass Spectrometry in Negative Ion Mode. Int J Neonatal Screen 2022; 8:ijns8020027. [PMID: 35466198 PMCID: PMC9036197 DOI: 10.3390/ijns8020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder caused by pathogenic variants in the ATP-binding cassette subfamily D member 1 gene (ABCD1) that encodes the adrenoleukodystrophy protein (ALDP). Defects in ALDP result in elevated cerotic acid, and lead to C26:0-lysophosphatidylcholine (C26:0-LPC) accumulation, which is the primary biomarker used in newborn screening (NBS) for X-ALD. C26:0-LPC levels were measured in dried blood spot (DBS) NBS specimens using a flow injection analysis (FIA) coupled with electrospray ionization (ESI) tandem mass spectrometry (MS/MS) performed in negative ion mode. The method was validated by assessing and confirming linearity, accuracy, and precision. We have also established C26:0-LPC cutoff values that identify newborns at risk for X-ALD. The mean concentration of C26:0-LPC in 5881 de-identified residual routine NBS specimens was 0.07 ± 0.02 µM (mean + 1 standard deviation (SD)). All tested true X-ALD positive and negative samples were correctly identified based on C26:0-LPC cutoff concentrations for borderline between 0.15 µM and 0.22 µM (mean + 4 SD) and presumptive screening positive at ≥0.23 µM (mean + 8 SD). The presented FIA method shortens analysis run-time to 1.7 min, while maintaining the previously established advantage of utilizing negative mode MS to eliminate isobaric interferences that could lead to screening false positives.
Collapse
Affiliation(s)
- Tarek A. Teber
- Newborn Screening Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, 465 Henry Mall, Madison, WI 53706, USA; (T.A.T.); (B.J.C.)
| | - Brian J. Conti
- Newborn Screening Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, 465 Henry Mall, Madison, WI 53706, USA; (T.A.T.); (B.J.C.)
| | - Christopher A. Haynes
- Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, 4770 Buford Hwy. NE, Atlanta, GA 30341, USA;
| | - Amy Hietala
- Newborn Screening Laboratory, Minnesota Department of Health, St. Paul, MN 55164, USA;
| | - Mei W. Baker
- Newborn Screening Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, 465 Henry Mall, Madison, WI 53706, USA; (T.A.T.); (B.J.C.)
- Genetics and Metabolism Division, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, 1500 Highland Avenue, Madison, WI 53705, USA
- Center for Human Genomics and Precision Medicine, University of Wisconsin School of Medicine and Public Health, Madison, 1111 Highland Avenue, Madison, WI 53705, USA
- Correspondence: ; Tel.: +1-608-890-1796
| |
Collapse
|
9
|
Burton BK, Hickey R, Hitchins L, Shively V, Ehrhardt J, Ashbaugh L, Peng Y, Basheeruddin K. Newborn Screening for X-Linked Adrenoleukodystrophy: The Initial Illinois Experience. Int J Neonatal Screen 2022; 8:ijns8010006. [PMID: 35076462 PMCID: PMC8788425 DOI: 10.3390/ijns8010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a genetic neurodegenerative disorder with an approximate incidence of 1 in 14,700 births. Both males and females are affected. Approximately one-third of affected males develop childhood cerebral adrenoleukodystrophy, which progresses rapidly to severe disability and death. In these cases, early surveillance and treatment can be lifesaving, but only if initiated before the onset of neurologic symptoms. Therefore, X-ALD was added to the Recommended Uniform Screening Panel. We report outcomes of the initial screening of approximately 276,000 newborns in Illinois. The lipid C26:0 lysophosphatidylcholine (C26:0-LPC) was measured in dried blood spots (DBS) using liquid chromatography with tandem mass spectrometry. Results ≥ 0.28 µmol/L were considered screen positive. Of 18 screen positive results detected, 12 cases were confirmed. Results were reported as borderline if initial and repeat analyses were ≥0.18 and <0.28 µmol/L. Of the 73 borderline screen results, 57 were normal after analysis of a second sample. Five X-ALD cases were identified from borderline screens. Newborn screening of X-ALD was successfully implemented in Illinois, and results were comparable to reports from other states. Early identification of infants with this potentially life-threatening disorder will significantly improve outcomes for these children.
Collapse
Affiliation(s)
- Barbara K. Burton
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (R.H.); (L.H.); (V.S.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Correspondence:
| | - Rachel Hickey
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (R.H.); (L.H.); (V.S.)
| | - Lauren Hitchins
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (R.H.); (L.H.); (V.S.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vera Shively
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (R.H.); (L.H.); (V.S.)
| | - Joan Ehrhardt
- Office of Health Promotion, Illinois Department of Public Health, Springfield, IL 62761, USA; (J.E.); (L.A.)
| | - Laura Ashbaugh
- Office of Health Promotion, Illinois Department of Public Health, Springfield, IL 62761, USA; (J.E.); (L.A.)
| | - Yin Peng
- Newborn Screening Laboratory, Illinois Department of Public Health, Chicago, IL 60612, USA; (Y.P.); (K.B.)
| | - Khaja Basheeruddin
- Newborn Screening Laboratory, Illinois Department of Public Health, Chicago, IL 60612, USA; (Y.P.); (K.B.)
| |
Collapse
|
10
|
A highly multiplexed biochemical assay for analytes in dried blood spots: application to newborn screening and diagnosis of lysosomal storage disorders and other inborn errors of metabolism. Genet Med 2020; 22:1262-1268. [DOI: 10.1038/s41436-020-0790-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
|
11
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci 2020; 80:52-72. [PMID: 31909500 PMCID: PMC7041623 DOI: 10.1002/jdn.10003] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific roles of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials and the advent of newborn screening in the USA. In ALD, very long-chain fatty acid (VLCFA) chain length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R. Turk
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Christiane Theda
- Neonatal ServicesRoyal Women's HospitalMurdoch Children's Research Institute and University of MelbourneMelbourneVICAustralia
| | - Ali Fatemi
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Ann B. Moser
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| |
Collapse
|
12
|
Lee S, Clinard K, Young SP, Rehder CW, Fan Z, Calikoglu AS, Bali DS, Bailey DB, Gehtland LM, Millington DS, Patel HS, Beckloff SE, Zimmerman SJ, Powell CM, Taylor JL. Evaluation of X-Linked Adrenoleukodystrophy Newborn Screening in North Carolina. JAMA Netw Open 2020; 3:e1920356. [PMID: 32003821 PMCID: PMC7042889 DOI: 10.1001/jamanetworkopen.2019.20356] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal genetic disorder in which an accumulation of very long-chain fatty acids leads to inflammatory demyelination in the central nervous system and to adrenal cortex atrophy. In 2016, X-ALD was added to the US Recommended Uniform Screening Panel. OBJECTIVE To evaluate the performance of a single-tier newborn screening assay for X-ALD in North Carolina. DESIGN, SETTING, AND PARTICIPANTS This diagnostic screening study was of all newborn dried blood spot specimens received in the North Carolina State Laboratory of Public Health between January 2 and June 1, 2018, excluding specimens of insufficient quantity or quality. A total of 52 301 specimens were screened for X-ALD using negative ionization high-performance liquid chromatography tandem mass spectrometry to measure C24:0- and C26:0-lysophosphatidylcholine concentrations. Sanger sequencing of the adenosine triphosphate-binding cassette subfamily D member 1 (ABCD1) gene was performed on screen-positive specimens. EXPOSURES A medical and family history, newborn physical examination, sequencing of ABCD1 on dried blood spot samples, and plasma analysis of very long-chain fatty acids were obtained for all infants with screen-positive results. MAIN OUTCOMES AND MEASURES The prevalence of X-ALD in North Carolina and the positive predictive value and false-positive rate for the first-tier assay were determined. RESULTS Of 52 301 infants tested (47.8% female, 50.6% male, and 1.7% other or unknown sex), 12 received screen-positive results. Of these 12 infants, 8 were confirmed with a genetic disorder: 3 male infants with X-ALD, 3 X-ALD-heterozygous female infants, 1 female infant with a peroxisome biogenesis disorder, and 1 female infant with Aicardi-Goutières syndrome. Four infants were initially classified as having false-positives results, including 3 female infants who were deemed unaffected and 1 male infant with indeterminate results on confirmatory testing. The positive predictive value for X-ALD or other genetic disorders for the first-tier assay was 67%, with a false-positive rate of 0.0057%. CONCLUSIONS AND RELEVANCE This newborn screening pilot study reported results on 2 lysophosphatidylcholine analytes, identifying 3 male infants with X-ALD, 3 X-ALD-heterozygous female infants, and 3 infants with other disorders associated with increased very long-chain fatty acids. These results showed successful implementation in a public health program with minimal risk to the population. The findings will support other state laboratories planning to implement newborn screening for X-ALD and related disorders.
Collapse
Affiliation(s)
- Stacey Lee
- RTI International, Research Triangle Park, North Carolina
| | - Kristin Clinard
- Division of Genetics and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill
| | - Sarah P. Young
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Catherine W. Rehder
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Zheng Fan
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill
| | - Ali S. Calikoglu
- Division of Pediatric Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill
| | - Deeksha S. Bali
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | | | | | - David S. Millington
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Hari S. Patel
- North Carolina State Laboratory of Public Health, Raleigh
| | | | | | - Cynthia M. Powell
- Division of Genetics and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill
| | - Jennifer L. Taylor
- RTI International, Research Triangle Park, North Carolina
- Now at Division of Newborn and Childhood Screening, Maryland Department of Health, Laboratories Administration, Baltimore
| |
Collapse
|
13
|
Laboratory diagnosis of disorders of peroxisomal biogenesis and function: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2019; 22:686-697. [PMID: 31822849 DOI: 10.1038/s41436-019-0713-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/02/2023] Open
Abstract
Peroxisomal disorders are a clinically and genetically heterogeneous group of diseases caused by defects in peroxisomal biogenesis or function, usually impairing several metabolic pathways. Peroxisomal disorders are rare; however, the incidence may be underestimated due to the broad spectrum of clinical presentations. The inclusion of X-linked adrenoleukodystrophy to the Recommended Uniform Screening Panel for newborn screening programs in the United States may increase detection of this and other peroxisomal disorders. The current diagnostic approach relies heavily on biochemical genetic tests measuring peroxisomal metabolites, including very long-chain and branched-chain fatty acids in plasma and plasmalogens in red blood cells. Molecular testing can confirm biochemical findings and identify the specific genetic defect, usually utilizing a multiple-gene panel or exome/genome approach. When next-generation sequencing is used as a first-tier test, evaluation of peroxisome metabolism is often necessary to assess the significance of unknown variants and establish the extent of peroxisome dysfunction. This document provides a resource for laboratories developing and implementing clinical biochemical genetic testing for peroxisomal disorders, emphasizing technical considerations for sample collection, test performance, and result interpretation. Additionally, considerations on confirmatory molecular testing are discussed.
Collapse
|
14
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked Adrenoleukodystrophy: Pathology, Pathophysiology, Diagnostic Testing, Newborn Screening, and Therapies. Int J Dev Neurosci 2019:S0736-5748(19)30133-9. [PMID: 31778737 DOI: 10.1016/j.ijdevneu.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific role of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials, and the advent of newborn screening in the United States. In ALD, very long chain fatty acid (VLCFA) chain-length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R Turk
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Christiane Theda
- Neonatal Services, Royal Women's Hospital, Murdoch Children's Research Institute and University of Melbourne, 20 Flemington Road, Parkville, VIC, 3052, Melbourne, Australia.
| | - Ali Fatemi
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Ann B Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| |
Collapse
|
15
|
Wiens K, Berry SA, Choi H, Gaviglio A, Gupta A, Hietala A, Kenney-Jung D, Lund T, Miller W, Pierpont EI, Raymond G, Winslow H, Zierhut HA, Orchard PJ. A report on state-wide implementation of newborn screening for X-linked Adrenoleukodystrophy. Am J Med Genet A 2019; 179:1205-1213. [PMID: 31074578 PMCID: PMC6619352 DOI: 10.1002/ajmg.a.61171] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Minnesota became the fourth state to begin newborn screening (NBS) for X‐linked adrenoleukodystrophy (X‐ALD) in 2017. As there is limited retrospective data available on NBS for X‐ALD, we analyzed Minnesota's NBS results from the first year of screening. C26:0 lysophosphatidylcholine (C26:0‐LPC) screening results of 67,836 infants and confirmatory testing (ABCD1 gene and serum VLCFA analysis) for screen positives were obtained. Fourteen infants (nine males, five females) screened positive for X‐ALD and all were subsequently confirmed to have X‐ALD, with zero false positives. The birth prevalence of X‐ALD in screened infants was 1 in 4,845 and 1 in 3,878 males, more than five times previous reported incidences. Pedigrees of affected infants were analyzed, and 17 male (mean age of 17) and 24 female relatives were subsequently diagnosed with X‐ALD. Phenotypes of these family members included self‐reported mild neuropathy symptoms in two males and seven females, and childhood cerebral disease (ccALD) and adrenal insufficiency in one male. We observed fewer cases of ccALD and adrenal insufficiency than expected in male family members (5.9% of males for both) compared to previous observations. Together, these findings suggest that the spectrum of X‐ALD may be broader than previously described and that milder cases may previously have been underrepresented. Other challenges included a high frequency of variants of uncertain significance in ABCD1 and an inability to predict phenotypic severity. We posit that thoughtful planning to address these novel challenges and coordination by dedicated specialists will be imperative for successful implementation of population‐based screening for X‐ALD.
Collapse
Affiliation(s)
- Katie Wiens
- Division of Genetics and Metabolism, Departments of Pediatrics and Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Susan A Berry
- Division of Genetics and Metabolism, Departments of Pediatrics and Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Hyoung Choi
- Division of Pediatric Neurology, Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Amy Gaviglio
- Minnesota Department of Health, St. Paul, MN, USA
| | - Ashish Gupta
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Amy Hietala
- Minnesota Department of Health, St. Paul, MN, USA
| | - Daniel Kenney-Jung
- Division of Pediatric Neurology, Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Troy Lund
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Elizabeth I Pierpont
- Division of Clinical Behavioral Neuroscience,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Gerald Raymond
- Division of Pediatric Neurology, Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | - Heather A Zierhut
- Department of Genetics, Cell, Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Paul J Orchard
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Natarajan A, Christopher R, Netravathi M, Bhat MD, Chandra SR. Flow injection ionization-tandem mass spectrometry-based estimation of a panel of lysophosphatidylcholines in dried blood spots for screening of X-linked adrenoleukodystrophy. Clin Chim Acta 2019; 495:167-173. [PMID: 30980791 DOI: 10.1016/j.cca.2019.04.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 04/09/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Elevated blood C26:0 lysophosphatidylcholine (LPC) is a diagnostic marker for X-linked adrenoleukodystrophy (X-ALD). Our aim was to develop a flow injection ionization-tandem mass spectrometry (FIA-MS/MS) method for estimating a panel of LPCs (C20:0-C26:0-LPCs) in dried blood spots (DBS) and to determine the sensitivity and specificity of this method for high-throughput screening for X-ALD. METHODS LPCs (C20:0-C26:0) were extracted from 3.2 mm DBS in a 96-well plate, spiked with isotopically-labelled internal standard (C26:0-d4-LPC) and measured by FIA-MS/MS in electrospray ionization (ESI)-positive, multiple reaction monitoring (MRM) mode using a triple quadrupole, tandem mass spectrometer. The sensitivity and specificity of the FIA-MS/MS method for screening of X-ALD was determined. The FIA-MS/MS method was compared with the LC-MS/MS method for estimating LPC concentrations. RESULTS Elevated C26:0 and C24:0-LPCs were 100% sensitive for identification of X-ALD. However, specificity was only 78.33% for C26:0 and 98.33% for C24:0-LPCs. Sensitivity for C22:0 and C20:0 LPCs were 89.29%, 78.33% and specificity, 67.86% and 73.33%, respectively. The FIA-MS/MS method showed good concordance with the LC-MS/MS method. CONCLUSION The FIA-MS/MS method for estimating C26:0 and C24:0-LPCs in DBS is suitable for first-tier screening of newborns for X-ALD. Second-tier confirmatory testing is required to screen positive cases.
Collapse
Affiliation(s)
- Archana Natarajan
- Metabolic Laboratory, Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Rita Christopher
- Metabolic Laboratory, Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.
| | - Manjunath Netravathi
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Maya D Bhat
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | | |
Collapse
|
17
|
Liquid chromatography-tandem mass spectrometry method for estimation of a panel of lysophosphatidylcholines in dried blood spots for screening of X-linked adrenoleukodystrophy. Clin Chim Acta 2018; 485:305-310. [PMID: 30018013 DOI: 10.1016/j.cca.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Elevated C26:0-lysophosphatidylcholine (LPC) is used as a biomarker to screen newborns for X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder. Our aim was to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assay for estimating a panel of LPCs (C20:0, C22:0, C24:0 and C26:0) from dried blood spots (DBS) and to evaluate its sensitivity and specificity for identification of X-ALD in clinically suspected cases. METHODS LPCs (C20:0 - C26:0) were extracted from 3.2 mm DBS, spiked with an isotopically labelled internal standard (C26:0-d4-LPC) in a 96-well plate, and measured by LC-MS/MS in electrospray ionization positive, multiple reaction monitoring mode. The sensitivity and specificity of the method was evaluated in 21 patients diagnosed with X-ALD and 375 healthy controls. RESULTS Elevated C26:0 and C24:0-LPCs were 100% sensitive and specific for identification of X-ALD. The sensitivity and specificity of elevated C26:0/C20:0, C26/C22:0, C24:0/C20:0 and C24/C22:0-LPCs were > 80% and 70%, respectively. CONCLUSION The LC-MS/MS method for estimating LPCs in DBS can be used to identify X-ALD in clinically suspected patients. Further large-scale studies to determine the pre-analytical variables and to define age- and gender-specific reference ranges in various ethnic groups are warranted before introducing this method for high-risk screening in India.
Collapse
|
18
|
Hong X, Kumar AB, Ronald Scott C, Gelb MH. Multiplex tandem mass spectrometry assay for newborn screening of X-linked adrenoleukodystrophy, biotinidase deficiency, and galactosemia with flexibility to assay other enzyme assays and biomarkers. Mol Genet Metab 2018; 124:101-108. [PMID: 29680633 PMCID: PMC5976550 DOI: 10.1016/j.ymgme.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/30/2022]
Abstract
All States screen for biotinidase deficiency and galactosemia, and X-linked adrenoleukodystrophy (X-ALD) has recently been added to the Recommended Uniform Screening Panel (RUSP).We sought to consolidate these tests by combining them into a single multiplex tandem mass spectrometry assay as well as to improve the current protocol for newborn screening of galactosemia.A 3 mm punch of a dried blood spot (DBS) was extracted with organic solvent for analysis of the C26:0-lysophosphatidylcholine biomarker for X-ALD.An additional punch was used to assay galactose-1-phosphate uridyltransferase (GALT) and biotinidase.All assays were combined for a single injection for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (2.3 min per sample).The GALT LC-MS/MS assay does not give a false positive for galactosemia if glucose-6-phosphate dehydrogenase is deficient.The multiplex assay shows acceptable reproducibility and provides for rapid analysis of X-ALD, biotinidase deficiency, and galactosemia.The throughput and ease of sample preparation are acceptable for newborn screening laboratories.We also show that the LC-MS/MS assay is expandable to include several other diseases including Pompe and Hurler diseases (enzymatic activities and biomarkers).Because of consolidation of assays, less manpower is needed compared to running individual assays on separate platforms.The flexibility of the LC-MS/MS platform allows each newborn screening laboratory to analyze the set of diseases offered in their panel.
Collapse
Affiliation(s)
- Xinying Hong
- Departments of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Arun Babu Kumar
- Departments of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - C Ronald Scott
- Departments of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael H Gelb
- Departments of Chemistry, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
Mashima R, Maekawa M. Lipid biomarkers for the peroxisomal and lysosomal disorders: their formation, metabolism and measurement. Biomark Med 2018; 12:83-95. [DOI: 10.2217/bmm-2017-0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lipid biomarkers play important roles in the diagnosis of and monitoring of treatment in peroxisomal disorders and lysosomal storage disorders. Today, a variety of lipids, including very long chain fatty acids, glycolipids, bile acids and the oxidation products of cholesterol, have been considered as biomarkers for these disorders. In this brief review, the authors summarized the recent advances regarding these lipid biomarkers in terms of their formation, metabolism and measurement in these disorders. An understanding of these biomarkers will offer a key to the development of novel diagnoses and help create more effective therapies in the future.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health & Development, 2–10–1 Okura, Setagaya-ku, Tokyo 157–8535, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai 980–8574, Japan
| |
Collapse
|
20
|
Abstract
Early diagnosis of males with X-linked adrenoleukodystrophy (X-ALD) is essential for preventing loss of life due to adrenal insufficiency and for timely therapy of the childhood cerebral form of X-ALD with hematopoietic cell transplantation. This article describes X-ALD, the current therapies, the history of the development of the newborn screening test, the approval by the Secretary of Health and Human Services for the addition of X-ALD newborn screening to the recommended uniform panel of disorders screened as newborns (RUSP) and the successful implementation of X-ALD newborn screening in the state of New York beginning on 30 December 2013. Follow-up guidelines that have been established in New York are outlined. Based on the success of newborn screening in New York, and early results in Connecticut, where X-ALD newborn screening started in December 2015, and in California, where X-ALD newborn screening began in September 2016, we are confident and hopeful that X-ALD newborn screening will expand to include all US states and to countries that have established neonatal screening programs. The Minster of Health in the Netherlands has approved the addition of X-ALD to the newborn screening program with a start date expected in 2017. The states, such as Massachusetts, Illinois, Minnesota, New Jersey, Florida and Washington, that have legislative approval will commence screening as soon as budgetary resources, testing and follow-up procedures are in place.
Collapse
|
21
|
Mashima R, Tanaka M, Sakai E, Nakajima H, Kumagai T, Kosuga M, Okuyama T. A selective detection of lysophosphatidylcholine in dried blood spots for diagnosis of adrenoleukodystrophy by LC-MS/MS. Mol Genet Metab Rep 2016; 7:16-9. [PMID: 27331004 PMCID: PMC4908058 DOI: 10.1016/j.ymgmr.2016.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 10/27/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a rare inherited metabolic disorder characterized by an impaired beta-oxidation of very long chain fatty acids in the peroxisomes. Recent studies have suggested that 1-hexacosanoyl-2-hydroxy-sn-glycero-3-phosphocholine (Lyso-PC 26:0) can be a sensitive biomarker for X-ALD. Although approximately 10-fold increase in the concentration of Lyso-PC 26:0 in DBSs from X-ALD-affected individuals were reported, whether the carriers might be distinguished from the healthy controls remained unclear. To address this question, we have validated previously developed LC-MS/MS-based analytical procedures using QC DBS. We found that the recovery of Lyso-PC 26:0 from the QC DBSs was 73.6 ± 0.3% when 2 μM of Lyso-PC 26:0 was spiked into the blood. Based on this result, the amounts of Lyso-PC 26:0 in the controls and ALD-affected individuals were 0.090 ± 0.004 (n = 11) and 1.078 ± 0.217 (n = 4) pmol/DBS, respectively. Interestingly, the concentration of Lyso-PC 26:0 in the carriers were 0.548 ± 0.095 pmol/DBS (n = 3), indicating that the carriers and the healthy controls can be distinguished. These results suggest that LC-MS/MS-based technique can be used for the detection of asymptomatic carriers and X-ALD-affected subjects in the newborn screening.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Misa Tanaka
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Eri Sakai
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Hidenori Nakajima
- Research Institute, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Tadayuki Kumagai
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Motomichi Kosuga
- Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
22
|
Abstract
Inborn errors of metabolism are single gene disorders resulting from the defects in the biochemical pathways of the body. Although these disorders are individually rare, collectively they account for a significant portion of childhood disability and deaths. Most of the disorders are inherited as autosomal recessive whereas autosomal dominant and X-linked disorders are also present. The clinical signs and symptoms arise from the accumulation of the toxic substrate, deficiency of the product, or both. Depending on the residual activity of the deficient enzyme, the initiation of the clinical picture may vary starting from the newborn period up until adulthood. Hundreds of disorders have been described until now and there has been a considerable clinical overlap between certain inborn errors. Resulting from this fact, the definite diagnosis of inborn errors depends on enzyme assays or genetic tests. Especially during the recent years, significant achievements have been gained for the biochemical and genetic diagnosis of inborn errors. Techniques such as tandem mass spectrometry and gas chromatography for biochemical diagnosis and microarrays and next-generation sequencing for the genetic diagnosis have enabled rapid and accurate diagnosis. The achievements for the diagnosis also enabled newborn screening and prenatal diagnosis. Parallel to the development the diagnostic methods; significant progress has also been obtained for the treatment. Treatment approaches such as special diets, enzyme replacement therapy, substrate inhibition, and organ transplantation have been widely used. It is obvious that by the help of the preclinical and clinical research carried out for inborn errors, better diagnostic methods and better treatment approaches will high likely be available.
Collapse
|
23
|
Ombrone D, Giocaliere E, Forni G, Malvagia S, la Marca G. Expanded newborn screening by mass spectrometry: New tests, future perspectives. MASS SPECTROMETRY REVIEWS 2016; 35:71-84. [PMID: 25952022 DOI: 10.1002/mas.21463] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/09/2015] [Indexed: 05/02/2023]
Abstract
Tandem mass spectrometry (MS/MS) has become a leading technology used in clinical chemistry and has shown to be particularly sensitive and specific when used in newborn screening (NBS) tests. The success of tandem mass spectrometry is due to important advances in hardware, software and clinical applications during the last 25 years. MS/MS permits a very rapid measurement of many metabolites in different biological specimens by using filter paper spots or directly on biological fluids. Its use in NBS give us the chance to identify possible treatable metabolic disorders even when asymptomatic and the benefits gained by this type of screening is now recognized worldwide. Today the use of MS/MS for second-tier tests and confirmatory testing is promising especially in the early detection of new disorders such as some lysosomal storage disorders, ADA and PNP SCIDs, X-adrenoleucodistrophy (X-ALD), Wilson disease, guanidinoacetate methyltransferase deficiency (GAMT), and Duchenne muscular dystrophy. The new challenge for the future will be reducing the false positive rate by using second-tier tests, avoiding false negative results by using new specific biomarkers and introducing new treatable disorders in NBS programs.
Collapse
Affiliation(s)
- Daniela Ombrone
- Newborn screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Viale Pieraccini 24, Florence, 50139, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, Florence, 50139, Italy
| | - Elisa Giocaliere
- Newborn screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Viale Pieraccini 24, Florence, 50139, Italy
| | - Giulia Forni
- Newborn screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Viale Pieraccini 24, Florence, 50139, Italy
| | - Sabrina Malvagia
- Newborn screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Viale Pieraccini 24, Florence, 50139, Italy
| | - Giancarlo la Marca
- Newborn screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Viale Pieraccini 24, Florence, 50139, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, Florence, 50139, Italy
| |
Collapse
|
24
|
Haynes CA, De Jesús VR. Simultaneous quantitation of hexacosanoyl lysophosphatidylcholine, amino acids, acylcarnitines, and succinylacetone during FIA-ESI-MS/MS analysis of dried blood spot extracts for newborn screening. Clin Biochem 2015; 49:161-5. [PMID: 26432925 DOI: 10.1016/j.clinbiochem.2015.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The goal of this study was to include the quantitation of hexacosanoyl lysophosphatidylcholine, a biomarker for X-linked adrenoleukodystrophy and other peroxisomal disorders, in the routine extraction and analysis procedure used to quantitate amino acids, acylcarnitines, and succinylacetone during newborn screening. Criteria for the method included use of a single punch from a dried blood spot, one simple extraction of the punch, no high-performance liquid chromatography, and utilizing tandem mass spectrometry to quantitate the analytes. DESIGN AND METHODS Dried blood spot punches were extracted with a methanolic solution of stable-isotope labeled internal standards, formic acid, and hydrazine, followed by flow injection analysis-electrospray ionization-tandem mass spectrometry. RESULTS Quantitation of amino acids, acylcarnitines, and hexacosanoyl lysophosphatidylcholine using this combined method was similar to results obtained using two separate methods. CONCLUSIONS A single dried blood spot punch extracted by a rapid (45min), simple procedure can be analyzed with high throughput (2min per sample) to quantitate amino acids, acylcarnitines, succinylacetone, and hexacosanoyl lysophosphatidylcholine.
Collapse
Affiliation(s)
- Christopher A Haynes
- Biochemical Mass Spectrometry Laboratory, Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, MS F19, Atlanta, GA 30341, USA.
| | - Víctor R De Jesús
- Biochemical Mass Spectrometry Laboratory, Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, MS F19, Atlanta, GA 30341, USA
| |
Collapse
|
25
|
Wiesinger C, Eichler FS, Berger J. The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. APPLICATION OF CLINICAL GENETICS 2015; 8:109-21. [PMID: 25999754 PMCID: PMC4427263 DOI: 10.2147/tacg.s49590] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding a peroxisomal ABC transporter. In this review, we compare estimates of incidence derived from different populations in order to provide an overview of the worldwide incidence of X-ALD. X-ALD presents with heterogeneous phenotypes ranging from adrenomyeloneuropathy (AMN) to inflammatory demyelinating cerebral ALD (CALD). A large number of different mutations has been described, providing a unique opportunity for analysis of functional domains within ABC transporters. Yet the molecular basis for the heterogeneity of clinical symptoms is still largely unresolved, as no correlation between genotype and phenotype exists in X-ALD. Beyond ABCD1, environmental triggers and other genetic factors have been suggested as modifiers of the disease course. Here, we summarize the findings of numerous reports that aimed at identifying modifier genes in X-ALD and discuss potential problems and future approaches to address this issue. Different options for prenatal diagnosis are summarized, and potential pitfalls when applying next-generation sequencing approaches are discussed. Recently, the measurement of very long-chain fatty acids in lysophosphatidylcholine for the identification of peroxisomal disorders was included in newborn screening programs.
Collapse
Affiliation(s)
- Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Florian S Eichler
- Department for Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Vogel BH, Bradley SE, Adams DJ, D'Aco K, Erbe RW, Fong C, Iglesias A, Kronn D, Levy P, Morrissey M, Orsini J, Parton P, Pellegrino J, Saavedra-Matiz CA, Shur N, Wasserstein M, Raymond GV, Caggana M. Newborn screening for X-linked adrenoleukodystrophy in New York State: diagnostic protocol, surveillance protocol and treatment guidelines. Mol Genet Metab 2015; 114:599-603. [PMID: 25724074 DOI: 10.1016/j.ymgme.2015.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE To describe a diagnostic protocol, surveillance and treatment guidelines, genetic counseling considerations and long-term follow-up data elements developed in preparation for X-linked adrenoleukodystrophy (X-ALD) newborn screening in New York State. METHODS A group including the director from each regional NYS inherited metabolic disorder center, personnel from the NYS Newborn Screening Program, and others prepared a follow-up plan for X-ALD NBS. Over the months preceding the start of screening, a series of conference calls took place to develop and refine a complete newborn screening system from initial positive screen results to long-term follow-up. RESULTS A diagnostic protocol was developed to determine for each newborn with a positive screen whether the final diagnosis is X-ALD, carrier of X-ALD, Zellweger spectrum disorder, acyl CoA oxidase deficiency or D-bifunctional protein deficiency. For asymptomatic males with X-ALD, surveillance protocols were developed for use at the time of diagnosis, during childhood and during adulthood. Considerations for timing of treatment of adrenal and cerebral disease were developed. CONCLUSION Because New York was the first newborn screening laboratory to include X-ALD on its panel, and symptoms may not develop for years, long-term follow-up is needed to evaluate the presented guidelines.
Collapse
Affiliation(s)
- B H Vogel
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - S E Bradley
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - D J Adams
- Jacobs Equity Management Personalized Genomic Medicine Program, Goryeb Pediatrics Genetics and Metabolism, Morristown, NJ, USA
| | - K D'Aco
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - R W Erbe
- Division of Genetics, Women and Children's Hospital of Buffalo, Buffalo, NY, USA
| | - C Fong
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - A Iglesias
- New York Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - D Kronn
- New York Medical College, Valhalla, NY, USA
| | - P Levy
- Center for Inherited Medical Disorders, Children's Hospital at Montefiore, Bronx, NY, USA
| | - M Morrissey
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - J Orsini
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - P Parton
- Division of Genetics, Stony Brook Long Island Children's Hospital, Stony Brook, NY, USA
| | - J Pellegrino
- Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - C A Saavedra-Matiz
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - N Shur
- Albany Medical Center, Albany, NY, USA
| | - M Wasserstein
- Division of Medical Genetics, Division of Genomic Sciences, Mount Sinai Medical Center, New York, NY, USA
| | - G V Raymond
- Department of Neurology, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - M Caggana
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
27
|
The stability of hexacosanoyl lysophosphatidylcholine in dried-blood spot quality control materials for X-linked adrenoleukodystrophy newborn screening. Clin Biochem 2014; 48:8-10. [PMID: 25307302 DOI: 10.1016/j.clinbiochem.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Newborn screening for X-linked adrenoleukodystrophy utilizes tandem mass spectrometry to analyze dried-blood spot specimens. Quality control materials (dried-blood spots enriched with hexacosanoyl lysophosphatidylcholine) were prepared and stored at different temperatures for up to 518days to evaluate the stability of this biomarker for X-linked adrenoleukodystrophy. DESIGN AND METHODS Dried-blood spot storage included desiccant (45, 171, and 518days) or omitted desiccant (53days at >90% relative humidity). Specimens were stored for 171 and 518days at -20°C, 4°C, ambient temperature, and 37°C. Each weekday for 45days, a bag of specimens stored at 4°C was warmed to ambient temperature and one specimen was removed for storage at -80°C. Specimens were analyzed by high-performance liquid-chromatography electrospray ionization tandem mass spectrometry and data was plotted as concentration (micromoles per liter) vs. time. Linear regression provided slope and y-intercept values for each storage condition. RESULTS Small slope values (0.01 or less) and y-intercept values close to the enrichment indicated less than 11% loss of hexacosanoyl lysophosphatidylcholine under all storage conditions tested. CONCLUSIONS Quality control materials for X-linked adrenoleukodystrophy are stable for at least 1year when stored with desiccant.
Collapse
|
28
|
Sharma A, Jaiswal S, Shukla M, Lal J. Dried blood spots: Concepts, present status, and future perspectives in bioanalysis. Drug Test Anal 2014; 6:399-414. [DOI: 10.1002/dta.1646] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Abhisheak Sharma
- Pharmacokinetics & Metabolism Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi India
| | - Swati Jaiswal
- Pharmacokinetics & Metabolism Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi India
| | - Mahendra Shukla
- Pharmacokinetics & Metabolism Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi India
| | - Jawahar Lal
- Pharmacokinetics & Metabolism Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi India
| |
Collapse
|
29
|
Nong G, Chen S, Xu Y, Huang L, Zou Q, Li S, Mo H, Zhu P, Cen W, Wang S. Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor. Sci Rep 2014; 4:3572. [PMID: 24389750 PMCID: PMC3880959 DOI: 10.1038/srep03572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/02/2013] [Indexed: 12/28/2022] Open
Abstract
A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process.
Collapse
Affiliation(s)
- Guangzai Nong
- Center for Sugar Engineering and Technology Research, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Shan Chen
- Center for Sugar Engineering and Technology Research, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Yuanjin Xu
- State key laboratory for conservation and utilization of subtropical agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Lijie Huang
- Center for Sugar Engineering and Technology Research, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Qingsong Zou
- Center for Sugar Engineering and Technology Research, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Shiqiang Li
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Haitao Mo
- Center for Sugar Engineering and Technology Research, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Pingchuan Zhu
- State key laboratory for conservation and utilization of subtropical agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Weijian Cen
- State key laboratory for conservation and utilization of subtropical agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Shuangfei Wang
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
30
|
Molecular Species of Phospholipids with Very Long Chain Fatty Acids in Skin Fibroblasts of Zellweger Syndrome. Lipids 2013; 48:1253-67. [DOI: 10.1007/s11745-013-3848-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/19/2013] [Indexed: 11/25/2022]
|
31
|
Ozben T. Expanded newborn screening and confirmatory follow-up testing for inborn errors of metabolism detected by tandem mass spectrometry. Clin Chem Lab Med 2013; 51:157-176. [DOI: 10.1515/cclm-2012-0472] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Newborn screening (NBS) of inborn errors of metabolism (IEM) is a coordinated comprehensive system consisting of education, screening, follow-up of abnormal test results, confirmatory testing, diagnosis, treatment, and evaluation of periodic outcome and efficiency. The ultimate goal of NBS and follow-up programs is to reduce morbidity and mortality from the disorders. Over the past decade, tandem mass spectrometry (MS/MS) has become a key technology in the field of NBS. It has replaced classic screening techniques of one-analysis, one-metabolite, one-disease with one analysis, many-metabolites, and many-diseases. The development of electrospray ionization (ESI), automation of sample handling and data manipulation have allowed the introduction of expanded NBS for the identification of numerous conditions on a single sample and new conditions to be added to the list of disorders being screened for using MS/MS. In the case of a screened positive result, a follow-up analytical test should be performed for confirmation of the primary result. The most common confirmatory follow-up tests are amino acids and acylcarnitine analysis in plasma and organic acid analysis in urine. NBS should be integrated with follow-up and clinical management. Recent improvements in therapy have caused some disorders to be considered as potential candidates for NBS. This review covers some of the basic theory of expanded MS/MS and follow-up confirmatory tests applied for NBS of IEM.
Collapse
Affiliation(s)
- Tomris Ozben
- Faculty of Medicine, Department of Clinical Biochemistry, Akdeniz University, 07070 , Antalya , Turkey
| |
Collapse
|