2
|
Zhou Z, Wang K, Zhou J, Wang C, Li X, Cui L, Han L, Liu Z, Ren W, Wang X, Zhang K, Li Z, Pan D, Li C, Shi Y. Amplicon targeted resequencing for SLC2A9 and SLC22A12 identified novel mutations in hypouricemia subjects. Mol Genet Genomic Med 2019; 7:e00722. [PMID: 31131560 PMCID: PMC6625124 DOI: 10.1002/mgg3.722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/19/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023] Open
Abstract
Background To identify potential causative mutations in SLC2A9 and SLC22A12 that lead to hypouricemia or hyperuricemia (HUA). Methods Targeted resequencing of whole exon regions of SLC2A9 and SLC22A12 was performed in three cohorts of 31 hypouricemia, 288 HUA and 280 normal controls. Results A total of 84 high‐quality variants were identified in these three cohorts. Eighteen variants were nonsynonymous or in splicing region, and then included in the following association analysis. For common variants, no significant effects on hypouricemia or HUA were identified. For rare variants, six single nucleotide variations (SNVs) p.T21I and p.G13D in SLC2A9, p.W50fs, p.Q382L, p.V547L and p.E458K in SLC22A12, occurred in totally six hypouricemia subjects and were absent in HUA and normal controls. Allelic and genotypic frequency distributions of the six SNVs differed significantly between the hypouricemia and normal controls even after multiple testing correction, and p.G13D in SLC2A9 and p.V547L in SLC22A12 were newly reported. All these mutations had no significant effects on HUA susceptibility, while the gene‐based analyses substantiated the significant results on hypouricemia. Conclusion Our study first presents a comprehensive mutation spectrum of hypouricemia in a large Chinese cohort.
Collapse
Affiliation(s)
- Zhaowei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Can Wang
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Xinde Li
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Lingling Cui
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Lin Han
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Zhen Liu
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Wei Ren
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Xuefeng Wang
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Keke Zhang
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China.,The Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Zhiqiang Li
- Biomedical Sciences Institute, the Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, P.R. China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Changgui Li
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China.,The Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China.,Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Biomedical Sciences Institute, the Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, P.R. China
| |
Collapse
|
4
|
Makanga JO, Christianto A, Inazu T. Allele-specific real-time polymerase chain reaction as a tool for urate transporter 1 mutation detection. Methods Mol Biol 2015; 1275:117-25. [PMID: 25697655 DOI: 10.1007/978-1-4939-2365-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Allele-specific polymerase chain reaction (ASPCR) method has long been applied for the detection of nucleotide variations and genotyping, which are detected by the presence or absence of DNA amplification PCR products. Recently, Real-Time PCR genotyping has fast developed and offered a rapid method of detecting mutations without the need of gel electrophoresis as with ASPCR. Here, we describe an easy and rapid touchdown real-time PCR method for the detection of nucleotide variations. Using our method we successfully detect two main mutations in human urate transporter 1 (SLC22A12), W258X and R90H, and validate the results. The method can potentially be applied to genotype of various other nucleotide variations.
Collapse
Affiliation(s)
- Juliet O Makanga
- Laboratory of Functional Genomics, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Biwako Kusatsu Campus (BKC), Kusatsu City, Shiga, 525-8577, Japan
| | | | | |
Collapse
|