1
|
Wang J, Luo J, Yang S, Deng Y, Chen P, Tan Y, Liu Y. Development and validation of disulfidptosis-related genes signature for patients with glioma. Discov Oncol 2024; 15:758. [PMID: 39692962 DOI: 10.1007/s12672-024-01664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Disulfidptosis has recently emerged as a novel form of regulated cell death (RCD). Evasion of cell death is a hallmark of cancer, and the resistance of many tumors to apoptosis-inducing therapies has heightened interest in exploring alternative RCD mechanisms. METHODS Transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA). Glioma samples were classified using non-negative matrix factorization (NMF). A predictive model was constructed using Lasso regression analysis, and its performance was evaluated through receiver operating characteristic (ROC) and Kaplan-Meier survival analyses. The relationship between the model and the tumor immune microenvironment (TIME) as well as treatment sensitivity was also assessed. Finally, we validated the expression of key signature genes in glioma. RESULTS Glioma samples were categorized into two distinct subtypes based on disulfidptosis-related genes, showing significant differences in overall survival (OS) and progression-free survival (PFS) between the subtypes. A genetic risk score model was then developed using these genes. A nomogram predicting OS was constructed using the risk score and clinical variables. Patients were stratified into low- and high-risk groups based on the median risk score from the TCGA cohort. Low-risk patients had significantly better outcomes compared to high-risk patients (TCGA cohort, OS: p < 0.001; PFS: p < 0.001; CGGA cohort, OS: p < 0.001). The risk score was associated with HLA expression, immune checkpoint genes, immune cell infiltration, immune function, tumor mutation burden, tumor stemness score, and drug sensitivity. Lastly, the expression of 11 signature genes was confirmed in glioma tissues. CONCLUSIONS The disulfidptosis-related gene-based risk score model effectively predicted glioma outcomes and highlighted the role of disulfidptosis-related genes in tumor immunity. This study offers potential new avenues for glioma treatment by targeting disulfidptosis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Junchi Luo
- Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Peng Chen
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Ying Tan
- Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Liu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China.
| |
Collapse
|
2
|
Wang T, He M, Zhang X, Guo Z, Wang P, Long F. Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: a novel perspective. Cell Mol Biol Lett 2024; 29:60. [PMID: 38671354 PMCID: PMC11046940 DOI: 10.1186/s11658-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Mengjie He
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zhixun Guo
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| |
Collapse
|
3
|
Kuriki Y, Sogawa M, Komatsu T, Kawatani M, Fujioka H, Fujita K, Ueno T, Hanaoka K, Kojima R, Hino R, Ueo H, Ueo H, Kamiya M, Urano Y. Modular Design Platform for Activatable Fluorescence Probes Targeting Carboxypeptidases Based on ProTide Chemistry. J Am Chem Soc 2024; 146:521-531. [PMID: 38110248 DOI: 10.1021/jacs.3c10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Carboxypeptidases (CPs) are a family of hydrolases that cleave one or more amino acids from the C-terminal of peptides or proteins and play indispensable roles in various physiological and pathological processes. However, only a few highly activatable fluorescence probes for CPs have been reported, and there is a need for a flexibly tunable molecular design platform to afford a range of fluorescence probes for CPs for biological and medical research. Here, we focused on the unique activation mechanism of ProTide-based prodrugs and established a modular design platform for CP-targeting florescence probes based on ProTide chemistry. In this design, probe properties such as fluorescence emission wavelength, reactivity/stability, and target CP can be readily tuned and optimized by changing the four probe modules: the fluorophore, the substituent on the phosphorus atom, the linker amino acid at the P1 position, and the substrate amino acid at the P1' position. In particular, switching the linker amino acid at position P1 enabled us to precisely optimize the reactivity for target CPs. As a proof-of-concept, we constructed probes for carboxypeptidase M (CPM) and prostate-specific membrane antigen (also known as glutamate carboxypeptidase II). The developed probes were applicable for the imaging of CP activities in live cells and in clinical specimens from patients. This design strategy should be useful in studying CP-related biological and pathological phenomena.
Collapse
Affiliation(s)
- Yugo Kuriki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mari Sogawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minoru Kawatani
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kyohhei Fujita
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rumi Hino
- Department of Sports and Health Science, Daito Bunka University, 560 Iwadono, Higashimatsuyama, Saitama 355-8501, Japan
| | - Hiroki Ueo
- Ueo Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Hiroaki Ueo
- Ueo Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
CPE Regulates Proliferation and Apoptosis of Primary Myocardial Cells Mediated by Ischemia and Hypoxia Injury. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3155171. [PMID: 35340224 PMCID: PMC8942647 DOI: 10.1155/2022/3155171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Objective To observe the effect of carboxypeptidase E (CPE) on the ischemia and hypoxia (I/H) injury of primary cardiomyocytes. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) technology was used to detect the expression of CPE in sham and myocardial infarction (MI) rat heart tissue, and the plasmid was transferred into primary cardiomyocytes by transfection technology. The apoptosis rate of cardiomyocytes was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, Annexin V-PI staining, and Cell Counting Kit-8 (CCK-8) assay. In addition, Caspase kit and qRT-PCR technology were used to detect the expression of apoptosis-related factors. The cell proliferation was detected by 5-ethynyl-2'-deoxyuridine (EdU) staining, flow cytometry, and qRT-PCR technology. In addition, Western blotting (WB) and qRT-PCR techniques were used to detect the Wnt/β-catenin pathway. Results First, we found that the expression of CPE in the marginal zone of MI was obviously reduced. Overexpression of CPE in primary cardiomyocytes can effectively inhibit ischemia/hypoxia (I/H)-induced apoptosis and decreased cell activity. In addition, CPE can promote cell proliferation and relieve the inhibitory effect of I/H on cardiomyocytes. At the same time, CPE can promote the expression of β-catenin and c-myc. Conclusion Overexpression of CPE in primary cardiomyocytes can effectively alleviate the decreased cell activity, increased apoptosis, and decreased proliferation caused by I/H and regulated by Wnt/β-catenin pathway.
Collapse
|
5
|
Cui R, Wang C, Zhao Q, Wang Y, Li Y. Serum Carboxypeptidase N1 Serves as a Potential Biomarker Complementing CA15-3 for Breast Cancer. Anticancer Agents Med Chem 2021; 20:2053-2065. [PMID: 32619179 DOI: 10.2174/1871520620666200703191135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The incidence and mortality of breast cancer are increasing annually. Breast cancer seriously threatens women's health and quality of life. We aimed to measure the clinical value of CPN1, a new serum marker of breast cancer and to evaluate the efficacy of CPN1 in combination with CA15-3. METHODS Seventy samples of breast cancer with lymph node metastasis, seventy-three samples of nonmetastatic breast cancer and twenty-five samples of healthy human serum were collected. Serum CA15-3 concentration was determined by Roche Elecsys, and serum CPN1 concentration was determined by ELISA. RESULTS In breast cancer patients, serum CPN1 concentration was positively correlated with tumour size, clinical stage and CA15-3 concentration (r = 0.376, P<0.0001). ROC curve analysis showed that the optimal critical concentration of CPN1 for breast cancer diagnosis was 32.8pg/ml. The optimal critical concentration of CPN1 in the diagnosis of metastatic breast cancer was 66.121pg/ml. CPN1 has a greater diagnostic ability for breast cancer (AUCCA15-3=0.702 vs. AUCCPN1=0.886, P<0.0001) and metastatic breast cancer (AUCCA15-3=0.629 vs. AUCCPN1=0.887, P<0.0001) than CA15-3, and the combined detection of CA15-3 and CPN1 can improve the diagnostic efficiency for breast cancer (AUCCA15-3+CPN1=0.916) and for distinguishing between metastatic and non-metastatic breast cancer (AUCCA15-3+CPN1=0.895). CONCLUSION CPN1 can be used as a new tumour marker to diagnose and evaluate the invasion and metastasis of breast cancer. The combined detection of CPN1 and CA15-3 is more accurate and has a certain value in clinical application.
Collapse
Affiliation(s)
- Ranliang Cui
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Chaomin Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Qi Zhao
- Tianjin Medical University, Tianjin, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Yueguo Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
6
|
Lu J, Wood D, Ingley E, Koks S, Wong D. Update on genomic and molecular landscapes of well-differentiated liposarcoma and dedifferentiated liposarcoma. Mol Biol Rep 2021; 48:3637-3647. [PMID: 33893924 DOI: 10.1007/s11033-021-06362-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/16/2021] [Indexed: 01/13/2023]
Abstract
Well-differentiated liposarcoma (WDLPS) is the most frequent subtype of liposarcoma and may transform into dedifferentiated liposarcoma (DDLPS) which is a more aggressive subtype. Retroperitoneal lesions of WDLPS/DDLPS tend to recur repeatedly due to incomplete resections, and adjuvant chemotherapy and radiotherapy have little effect on patient survival. Consequently, identifying therapeutic targets and developing targeted drugs is critical for improving the outcome of WDLPS/DDLPS patients. In this review, we summarised the mutational landscape of WDLPS/DDLPS from recent studies focusing on potential oncogenic drivers and the development of molecular targeted drugs for DDLPS. Due to the limited number of studies on the molecular networks driving WDLPS to DDLPS development, we looked at other dedifferentiation-related tumours to identify potential parallel mechanisms that could be involved in the dedifferentiation process generating DDLPS.
Collapse
Affiliation(s)
- Jun Lu
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia. .,Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.
| | - David Wood
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Evan Ingley
- Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.,Discipline of Medical, Molecular and Forensic Sciences, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6009, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6009, Australia
| | - Daniel Wong
- Anatomical Pathology, PathWest, QEII Medical Centre, Perth, WA, 6009, Australia
| |
Collapse
|
7
|
Parreira JR, Hernández-Castellano LE, Argüello A, Capote J, Castro N, de Sousa Araújo S, de Almeida AM. Understanding seasonal weight loss tolerance in dairy goats: a transcriptomics approach. BMC Genomics 2020; 21:629. [PMID: 32928114 PMCID: PMC7489022 DOI: 10.1186/s12864-020-06968-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Seasonal weight loss (SWL) is a very important limitation to the production of ruminants in the Mediterranean and Tropical regions. In these areas, long dry seasons lead to poor pastures with low nutritional value. During the dry season, ruminants, particularly those raised in extensive production systems, lose around 30% of their body weight. Seasonal weight loss has important consequences on animal productive performance and health. In this study, RNA sequencing was used to characterize feed restriction effects in dairy goat of 2 breeds with different SWL tolerance: Majorera (tolerant) and Palmera (susceptible). Nine Majorera and ten Palmera goats were randomly distributed in a control and a restricted group: Majorera Control (adequately fed; MC; n = 4), Palmera Control (adequately fed; PC; n = 6), Majorera Restricted (feed restricted; ME; n = 5) and Palmera Restricted (feed restricted; PE; n = 4). On day 22 of the trial, mammary gland biopsies were collected for transcriptomics analysis. Results From these samples, 24,260 unique transcripts were identified. From those, 82 transcripts were differentially expressed between MC and ME, 99 between PC and PE, twelve between both control groups and twenty-nine between both restricted groups. Conclusions Feed restriction affected several biochemical pathways in both breeds such as: carbohydrate and lipid transport; intracellular trafficking, RNA processing and signal transduction. This research also highlights the importance or involvement of the genes in tolerance (ENPP1, S-LZ, MT2A and GPNB) and susceptibility (GPD1, CTPS1, ELOVL6 and NR4A1) to SWL with respectively higher expression in the Majorera restriced group and the Palmera restricted group in comparison to the control groups. In addition, results from the study may be extrapolated to other dairy ruminant species.
Collapse
Affiliation(s)
- José Ricardo Parreira
- IBET - Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal.,ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | - Anastasio Argüello
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Juan Capote
- Unit of Animal Production, Pasture, and Forage in Arid and Subtropical Areas, Canary Islands Institute for Agricultural Research, 38270, La Laguna, Spain
| | - Noemí Castro
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Susana de Sousa Araújo
- ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - André Martinho de Almeida
- LEAF - Linking Landscape, Environment, Agriculture And Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 13409-017, Lisbon, Portugal.
| |
Collapse
|
8
|
Silva RN, Oliveira LCG, Parise CB, Oliveira JR, Severino B, Corvino A, di Vaio P, Temussi PA, Caliendo G, Santagada V, Juliano L, Juliano MA. Activity of human kallikrein-related peptidase 6 (KLK6) on substrates containing sequences of basic amino acids. Is it a processing protease? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:558-564. [PMID: 28254587 DOI: 10.1016/j.bbapap.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/12/2017] [Accepted: 02/26/2017] [Indexed: 12/25/2022]
Abstract
Human kallikrein 6 (KLK6) is highly expressed in the central nervous system and with elevated level in demyelinating disease. KLK6 has a very restricted specificity for arginine (R) and hydrolyses myelin basic protein, protein activator receptors and human ionotropic glutamate receptor subunits. Here we report a previously unreported activity of KLK6 on peptides containing clusters of basic amino acids, as in synthetic fluorogenic peptidyl-Arg-7-amino-4-carbamoylmethylcoumarin (peptidyl-ACC) peptides and FRET peptides in the format of Abz-peptidyl-Q-EDDnp (where Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-(2,4-dinitrophenyl) ethylenediamine), in which pairs or sequences of basic amino acids (R or K) were introduced. Surprisingly, KLK6 hydrolyzed the fluorogenic peptides Bz-A-R↓R-ACC and Z-R↓R-MCA between the two R groups, resulting in non-fluorescent products. FRET peptides containing furin processing sequences of human MMP-14, nerve growth factor (NGF), Neurotrophin-3 (NT-3) and Neurotrophin-4 (NT-4) were cleaved by KLK6 at the same position expected by furin. Finally, KLK6 cleaved FRET peptides derived from human proenkephalin after the KR, the more frequent basic residues flanking enkephalins in human proenkephalin sequence. This result suggests the ability of KLK6 to release enkephalin from proenkephalin precursors and resembles furin a canonical processing proteolytic enzyme. Molecular models of peptides were built into the KLK6 structure and the marked preference of the cut between the two R of the examined peptides was related to the extended conformation of the substrates.
Collapse
Affiliation(s)
- Roberta N Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Lilian C G Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Carolina B Parise
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Juliana R Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Beatrice Severino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Angela Corvino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Paola di Vaio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Piero A Temussi
- The Wohl Institute, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant'Angelo Via Cintia 21, 80126 Naples, Italy
| | - Giuseppe Caliendo
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Vincenzo Santagada
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Luiz Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Maria A Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
9
|
Kallikrein in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Chu M, Ji X, Chen W, Zhang R, Sun C, Wang T, Luo C, Gong J, Zhu M, Fan J, Hou Z, Dai J, Jin G, Wu T, Chen F, Hu Z, Ni C, Shen H. A genome-wide association study identifies susceptibility loci of silica-related pneumoconiosis in Han Chinese. Hum Mol Genet 2014; 23:6385-94. [DOI: 10.1093/hmg/ddu333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Li C, Sun D, Zhang S, Wang S, Wu X, Zhang Q, Liu L, Li Y, Qiao L. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS One 2014; 9:e96186. [PMID: 24858810 PMCID: PMC4032272 DOI: 10.1371/journal.pone.0096186] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/03/2014] [Indexed: 12/11/2022] Open
Abstract
Detecting genes associated with milk fat composition could provide valuable insights into the complex genetic networks of genes underling variation in fatty acids synthesis and point towards opportunities for changing milk fat composition via selective breeding. In this study, we conducted a genome-wide association study (GWAS) for 22 milk fatty acids in 784 Chinese Holstein cows with the PLINK software. Genotypes were obtained with the Illumina BovineSNP50 Bead chip and a total of 40,604 informative, high-quality single nucleotide polymorphisms (SNPs) were used. Totally, 83 genome-wide significant SNPs and 314 suggestive significant SNPs associated with 18 milk fatty acid traits were detected. Chromosome regions that affect milk fatty acid traits were mainly observed on BTA1, 2, 5, 6, 7, 9, 13, 14, 18, 19, 20, 21, 23, 26 and 27. Of these, 146 SNPs were associated with more than one milk fatty acid trait; most of studied fatty acid traits were significant associated with multiple SNPs, especially C18:0 (105 SNPs), C18 index (93 SNPs), and C14 index (84 SNPs); Several SNPs are close to or within the DGAT1, SCD1 and FASN genes which are well-known to affect milk composition traits of dairy cattle. Combined with the previously reported QTL regions and the biological functions of the genes, 20 novel promising candidates for C10:0, C12:0, C14:0, C14:1, C14 index, C18:0, C18:1n9c, C18 index, SFA, UFA and SFA/UFA were found, which composed of HTR1B, CPM, PRKG1, MINPP1, LIPJ, LIPK, EHHADH, MOGAT1, ECHS1, STAT1, SORBS1, NFKB2, AGPAT3, CHUK, OSBPL8, PRLR, IGF1R, ACSL3, GHR and OXCT1. Our findings provide a groundwork for unraveling the key genes and causal mutations affecting milk fatty acid traits in dairy cattle.
Collapse
Affiliation(s)
- Cong Li
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| | - Shengli Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sheng Wang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoping Wu
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Beijing, China
| | - Lv Qiao
- Beijing Dairy Cattle Center, Beijing, China
| |
Collapse
|
12
|
Huang O, Jiang M, Zhang X, Chen X, Wu J, Shen K. FASLG T844C polymorphism and susceptibility to breast cancer: a meta-analysis. Tumour Biol 2014; 35:1089-94. [PMID: 24408012 DOI: 10.1007/s13277-013-1145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/26/2013] [Indexed: 11/26/2022] Open
Abstract
Many studies were published to assess the association between FASLG T844C polymorphism and susceptibility to breast cancer, but the data were controversial. A meta-analysis was performed to assess the association comprehensively. We performed a comprehensive search in PubMed, Embase, and Web of Science to find eligible studies. Six studies with a total of 6,784 participants were finally included into the meta-analysis. There were a total of 3,382 cases with breast cancer and 3,402 controls in those six studies. Odds ratio (OR) with 95 % confidence interval (95 %CI) was used to evaluate the association. Overall, there was an obvious association between FASLG T844C polymorphism and breast cancer under all four contrast models (for C versus T: OR = 1.26, 95 %CI 1.05-1.50, P OR = 0.011; for CC versus TT: OR = 1.42, 95 %CI 1.11-1.81, P OR = 0.005; for CC versus TT/TC: OR = 1.41, 95 %CI 1.06-1.88, P OR = 0.019; for CC/TC versus TT: OR = 1.16, 95 %CI 1.01-1.33, P OR = 0.038). In the subgroup analysis by ethnicity, there was an obvious association between FASLG T844C polymorphism and breast cancer in Asians, but there was no obvious association in Caucasians. The meta-analysis suggests that there is an association between FASLG T844C polymorphism and susceptibility to breast cancer, especially in Asians.
Collapse
Affiliation(s)
- Ou Huang
- Department of Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | |
Collapse
|