1
|
Yao G, Wang G, Wang D, Su G. Identification of a novel mutation of FGFR3 gene in a large Chinese pedigree with hypochondroplasia by next-generation sequencing: A case report and brief literature review. Medicine (Baltimore) 2019; 98:e14157. [PMID: 30681580 PMCID: PMC6358355 DOI: 10.1097/md.0000000000014157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Hypochondroplasia (HCH) is the mildest form of chondrodysplasia characterized by disproportionate short stature, short extremities, and variable lumbar lordosis. It is caused by mutations in fibroblast growth factor receptor 3 (FGFR3) gene. Up to date, at least thirty mutations of FGFR3 gene have been found to be related to HCH. However, mutational screening of the FGFR3 gene is still far from completeness. Identification of more mutations is particularly important in diagnosis of HCH and will gain more insights into the molecular basis for the pathogenesis of HCH. PATIENT CONCERNS A large Chinese family consisting of 53 affected individuals with HCH phenotypes was examined. DIAGNOSES A novel missense mutation, c.1052C>T, in FGFR3 gene was identified in a large Chinese family with HCH. On the basis of this finding and clinical manifestations, the final diagnosis of HCH was made. INTERVENTIONS Next-generation sequencing (NGS) of DNA samples was performed to detect the mutation in the chondrodysplasia-related genes on the proband and her parents, which was confirmed by Sanger sequencing in the proband and most of other living affected family members. OUTCOMES A novel missense mutation, c.1052C>T, in the extracellular, ligand-binding domain of FGFR3 was identified in a large Chinese family with HCH. This heterozygous mutation results in substitution of serine for phenylalanine at amino acid 351 (p.S351F) and co-segregates with the phenotype in this family. Molecular docking analysis reveals that this unique FGFR3 mutation results in an enhancement of ligand-binding affinity between FGFR3 and its main ligand, fibroblast growth factor 9. LESSONS This novel mutation is the first mutation displaying an increase in ligand-binding affinity, therefore it may serve as a model to investigate ligand-dependent activity of FGF-FGFR complex. Our data also expanded the mutation spectrum of FGFR3 gene and facilitated clinic diagnosis and genetic counseling for this family with HCH.
Collapse
Affiliation(s)
- Guixiang Yao
- Institute of Translational Medicine, Jinan Central Hospital Affiliated to Shandong University
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong
| | - Guangxin Wang
- Institute of Translational Medicine, Jinan Central Hospital Affiliated to Shandong University
| | - Dawei Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Guohai Su
- Institute of Translational Medicine, Jinan Central Hospital Affiliated to Shandong University
| |
Collapse
|
2
|
Takahashi I, Kondo D, Oyama C, Yano T, Tamura H, Noguchi A, Takahashi T. A novel S269C mutation in fibroblast growth factor receptor 3 in a Japanese child with hypochondroplasia. Hum Genome Var 2018; 5:1. [PMID: 29736252 PMCID: PMC5933720 DOI: 10.1038/s41439-018-0001-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 11/12/2022] Open
Abstract
Functionally activating mutations in fibroblast growth factor receptor 3 (FGFR3) can cause four types of autosomal dominant skeletal dysplasia with short-limbed dwarfism that include the mildest phenotype, hypochondroplasia (HCH). A novel mutation (c.805A>T, p.S269C) was identified in a Japanese infant with HCH through direct sequencing of all FGFR3 exons and exon/intron boundaries. This mutation creates an additional cysteine residue in the extracellular region of FGFR3 that results in the functional activation of FGFR3.
Collapse
Affiliation(s)
- Ikuko Takahashi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Daiki Kondo
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Chikako Oyama
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Tamami Yano
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroaki Tamura
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Atsuko Noguchi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Tsutomu Takahashi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
3
|
Vora NL, Powell B, Brandt A, Strande N, Hardisty E, Gilmore K, Foreman AKM, Wilhelmsen K, Bizon C, Reilly J, Owen P, Powell CM, Skinner D, Rini C, Lyerly AD, Boggess KA, Weck K, Berg JS, Evans JP. Prenatal exome sequencing in anomalous fetuses: new opportunities and challenges. Genet Med 2017; 19:1207-1216. [PMID: 28518170 PMCID: PMC5675748 DOI: 10.1038/gim.2017.33] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/04/2017] [Indexed: 12/13/2022] Open
Abstract
PurposeWe investigated the diagnostic and clinical performance of exome sequencing in fetuses with sonographic abnormalities with normal karyotype and microarray and, in some cases, normal gene-specific sequencing.MethodsExome sequencing was performed on DNA from 15 anomalous fetuses and from the peripheral blood of their parents. Parents provided consent to be informed of diagnostic results in the fetus, medically actionable findings in the parents, and their identification as carrier couples for significant autosomal recessive conditions. We assessed the perceptions and understanding of exome sequencing using mixed methods in 15 mother-father dyads.ResultsIn seven (47%) of 15 fetuses, exome sequencing provided a diagnosis or possible diagnosis with identification of variants in the following genes: COL1A1, MUSK, KCTD1, RTTN, TMEM67, PIEZO1 and DYNC2H1. One additional case revealed a de novo nonsense mutation in a novel candidate gene (MAP4K4). The perceived likelihood that exome sequencing would explain the results (5.2 on a 10-point scale) was higher than the approximately 30% diagnostic yield discussed in pretest counseling.ConclusionExome sequencing had diagnostic utility in a highly select population of fetuses where a genetic diagnosis was highly suspected. Challenges related to genetics literacy and variant interpretation must be addressed by highly tailored pre- and posttest genetic counseling.
Collapse
Affiliation(s)
- Neeta L. Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bradford Powell
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alicia Brandt
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Natasha Strande
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Emily Hardisty
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly Gilmore
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ann Katherine M. Foreman
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- North Carolina Translational and Clinical Sciences (NC TraCS) Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kirk Wilhelmsen
- Departments of Genetics and Neurology, Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Chris Bizon
- Departments of Genetics and Neurology, Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jason Reilly
- Departments of Genetics and Neurology, Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Phil Owen
- Departments of Genetics and Neurology, Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Cynthia M. Powell
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pediatrics, Division of Genetics and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Debra Skinner
- FPG Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christine Rini
- Department of Health Behavior, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anne D. Lyerly
- Department of Social Medicine and Center for Bioethics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kim A. Boggess
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Karen Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jonathan S. Berg
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - James P. Evans
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Social Medicine and Center for Bioethics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
4
|
Takagi M, Kouwaki M, Kawase K, Shinohara H, Hasegawa Y, Yamada T, Fujiwara I, Sawai H, Nishimura G, Hasegawa T. A novel mutation Ser344Cys in FGFR3 causes achondroplasia with severe platyspondyly. Am J Med Genet A 2015; 167A:2851-4. [PMID: 26126848 DOI: 10.1002/ajmg.a.37231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/11/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Masaki Takagi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.,Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Masanori Kouwaki
- Department of Pediatrics (Neonates), Toyohashi Municipal Hospital, Aichi, Japan
| | - Koya Kawase
- Department of Neonatology and Pediatrics, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Hiroyuki Shinohara
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yukihiro Hasegawa
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Takahiro Yamada
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Ikuma Fujiwara
- Department of Pediatrics, Tohoku University School of Medicine, Miyagi, Japan
| | - Hideaki Sawai
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Hyogo, Japan
| | - Gen Nishimura
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Bianchi DW, Van Mieghem T, Shaffer LG, Faas BHW, Chitty LS, Ghidini A, Deprest J. In case you missed it: the Prenatal Diagnosis section editors bring you the most significant advances of 2013. Prenat Diagn 2014; 34:1-5. [PMID: 24382791 DOI: 10.1002/pd.4288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Diana W Bianchi
- Mother Infant Research Institute at Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|