1
|
Du C, Wei H, Zhang M, Hu M, Li Z, Zhang C, Luo X, Liang Y. Genetic analysis and long-term treatment monitoring of 11 children with glycogen storage disease type IIIa. J Pediatr Endocrinol Metab 2020; 33:923-930. [PMID: 32623374 DOI: 10.1515/jpem-2019-0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/16/2020] [Indexed: 11/15/2022]
Abstract
Objectives To investigate the clinical and genetic characteristics of children with glycogen storage disease type IIIa (GSD IIIa) and to explore the muscle involvement and manifestations of GSD IIIa patients. Methods The clinical data of 11 patients with GSD IIIa diagnosed by genetic testing from 2003 to 2019 were retrospectively analyzed. Results Twenty variants of AGL gene were detected in 11 patients, eight of which were novel variants. Before treatment, the height was significantly backward. All patients had hepatomegaly. Abnormal biochemical indicators were mainly manifested as significantly increased serum liver and muscle enzymes, accompanied by hypertriglyceridemia, hypoglycemia, hyperlactacidemia, slightly elevated pyruvic acid, and metabolic acidosis. After treatment, the height and liver size of the patients were significantly improved. At the same time, alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), lactic acid and pyruvic acid in children were significantly decreased, while creatine kinase (CK) was significantly increased. During follow-up monitoring, six patients developed ventricular hypertrophy. Lactate dehydrogenase (LDH) (691.67 ± 545.27 vs. 362.20 ± 98.66), lactic acid (3.18 ± 3.05 vs. 1.10 ± 0.40), and pyruvic acid (64.30 ± 39.69 vs. 32.06 ± 4.61) were significantly increased in patients with ventricular hypertrophy compared with those without ventricular hypertrophy. Conclusions In clinical cases of upper respiratory tract infection or gastrointestinal symptoms accompanied by hypoglycemia, dyslipidemia, metabolites disorders, elevated serum liver, and muscle enzymes, the possibility of GSD IIIa should be vigilant. During treatment monitoring, if lactic acid, pyruvic acid, LDH, and CK rise, it indicates that the disease is not well controlled and there is the possibility of cardiac hypertrophy.
Collapse
Affiliation(s)
- Caiqi Du
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wei
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoguang Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030,China
| |
Collapse
|
2
|
Iglesias Jorquera E, Tomás Pujante P, Ruiz García G, Vargas Acosta ÁM, Pons Miñano JA. Liver transplantation in patients with type IIIa glycogen storage disease, cirrhosis and hepatocellular carcinoma. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 111:168-169. [PMID: 30318896 DOI: 10.17235/reed.2018.5856/2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type III glycogen storage disease (GSD-III) is an autosomal recessive disorder due to the deficiency of the glycogen debrancher enzyme. 80% of the patients have hepatic and muscular involvement (IIIa), compared to 15% with only liver involvement (IIIb). As the life expectancy improves in these patients, the possible liver complications are better understood.
Collapse
Affiliation(s)
| | - Paula Tomás Pujante
- Aparato Digestivo, Hospital Clínico Universitario Virgen de la Arrixaca, España
| | - Gema Ruiz García
- Anatomía Patológica, Hospital Clínico Universitario Virgen de la Arrixaca
| | | | | |
Collapse
|
3
|
Jauze L, Monteillet L, Mithieux G, Rajas F, Ronzitti G. Challenges of Gene Therapy for the Treatment of Glycogen Storage Diseases Type I and Type III. Hum Gene Ther 2019; 30:1263-1273. [PMID: 31319709 DOI: 10.1089/hum.2019.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycogen storage diseases (GSDs) type I (GSDI) and type III (GSDIII), the most frequent hepatic GSDs, are due to defects in glycogen metabolism, mainly in the liver. In addition to hypoglycemia and liver pathology, renal, myeloid, or muscle complications affect GSDI and GSDIII patients. Currently, patient management is based on dietary treatment preventing severe hypoglycemia and increasing the lifespan of patients. However, most of the patients develop long-term pathologies. In the past years, gene therapy for GSDI has generated proof of concept for hepatic GSDs. This resulted in a recent clinical trial of adeno-associated virus (AAV)-based gene replacement for GSDIa. However, the current limitations of AAV-mediated gene transfer still represent a challenge for successful gene therapy in GSDI and GSDIII. Indeed, transgene loss over time was observed in GSDI liver, possibly due to the degeneration of hepatocytes underlying the physiopathology of both GSDI and GSDIII and leading to hepatic tumor development. Moreover, multitissue targeting requires high vector doses to target nonpermissive tissues such as muscle and kidney. Interestingly, recent pharmacological interventions or dietary regimen aiming at the amelioration of the hepatocyte abnormalities before the administration of gene therapy demonstrated improved efficacy in GSDs. In this review, we describe the advances in gene therapy and the limitations to be overcome to achieve efficient and safe gene transfer in GSDs.
Collapse
Affiliation(s)
- Louisa Jauze
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France.,Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Laure Monteillet
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
4
|
Distinct Clinical and Genetic Findings in Iranian Patients With Glycogen Storage Disease Type 3. J Clin Neuromuscul Dis 2018; 19:203-210. [PMID: 29794575 DOI: 10.1097/cnd.0000000000000212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Glycogen storage disease type 3 (GSD-III) is a rare inherited metabolic disorder caused by glycogen debranching enzyme deficiency. Various pathogenic mutations of the AGL gene lead to abnormal accumulation of glycogen in liver, skeletal, and cardiac muscles. Here, we report distinct clinical and genetic data of Iranian patients with GSD-III. METHODS Clinical and laboratory data of 5 patients with GSD-III were recorded. Genetic investigation was performed to identify the causative mutations. RESULTS Three patients had typical liver involvement in childhood and one was diagnosed 2 years after liver transplantation for cirrhosis of unknown etiology. Four patients had vacuolar myopathy with glycogen excess in muscle biopsy. All patients had novel homozygous mutations of the AGL gene namely c.378T>A, c.3295T>C, c.3777G>A, c.2002-2A>G, and c.1183C>T. CONCLUSIONS This is the first comprehensive report of patients with GSD-III in Iran with 2 uncommon clinical presentations and 5 novel mutations in the AGL gene.
Collapse
|
5
|
A Novel Nonsense Mutation of the AGL Gene in a Romanian Patient with Glycogen Storage Disease Type IIIa. Case Rep Genet 2016; 2016:8154910. [PMID: 26885414 PMCID: PMC4739001 DOI: 10.1155/2016/8154910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background. Glycogen storage disease type III (GSDIII) is a rare metabolic disorder with autosomal recessive inheritance, caused by deficiency of the glycogen debranching enzyme. There is a high phenotypic variability due to different mutations in the AGL gene. Methods and Results. We describe a 2.3-year-old boy from a nonconsanguineous Romanian family, who presented with severe hepatomegaly with fibrosis, mild muscle weakness, cardiomyopathy, ketotic fasting hypoglycemia, increased transaminases, creatine phosphokinase, and combined hyperlipoproteinemia. GSD type IIIa was suspected. Accordingly, genomic DNA of the index patient was analyzed by next generation sequencing of the AGL gene. For confirmation of the two mutations found, genetic analysis of the parents and grandparents was also performed. The patient was compound heterozygous for the novel mutation c.3235C>T, p.Gln1079(⁎) (exon 24) and the known mutation c.1589C>G, p.Ser530(⁎) (exon 12). c.3235 >T, p.Gln1079(⁎) was inherited from the father, who inherited it from his mother. c.1589C>G, p.Ser530(⁎) was inherited from the mother, who inherited it from her father. Conclusion. We report the first genetically confirmed case of a Romanian patient with GSDIIIa. We detected a compound heterozygous genotype with a novel mutation, in the context of a severe hepatopathy and an early onset of cardiomyopathy.
Collapse
|