1
|
Pillai J, Chincholkar T, Dixit R, Pandey M. A systematic review of proteomic biomarkers in oral squamous cell cancer. World J Surg Oncol 2021; 19:315. [PMID: 34711249 PMCID: PMC8555221 DOI: 10.1186/s12957-021-02423-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Head and neck squamous cell cancer (HNSCC) is the most common cancer associated with chewing tobacco, in the world. As this is divided in to sites and subsites, it does not make it to top 10 cancers. The most common subsite is the oral cancer. At the time of diagnosis, more than 50% of patients with oral squamous cell cancers (OSCC) had advanced disease, indicating the lack of availability of early detection and risk assessment biomarkers. The new protein biomarker development and discovery will aid in early diagnosis and treatment which lead to targeted treatment and ultimately a good prognosis. METHODS This systematic review was performed as per PRISMA guidelines. All relevant studies assessing characteristics of oral cancer and proteomics were considered for analysis. Only human studies published in English were included, and abstracts, incomplete articles, and cell line or animal studies were excluded. RESULTS A total of 308 articles were found, of which 112 were found to be relevant after exclusion. The present review focuses on techniques of cancer proteomics and discovery of biomarkers using these techniques. The signature of protein expression may be used to predict drug response and clinical course of disease and could be used to individualize therapy with such knowledge. CONCLUSIONS Prospective use of these markers in the clinical setting will enable early detection, prediction of response to treatment, improvement in treatment selection, and early detection of tumor recurrence for disease monitoring. However, most of these markers for OSCC are yet to be validated.
Collapse
Affiliation(s)
| | | | - Ruhi Dixit
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
2
|
EB2 promotes hepatocellular carcinoma proliferation and metastasis via MAPK/ERK pathway by modulating microtubule dynamics. Clin Sci (Lond) 2021; 135:847-864. [PMID: 33755094 DOI: 10.1042/cs20201500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
Metastasis is the main cause of poor postoperative survival of hepatocellular carcinoma (HCC) patients. Cytoskeleton rearrangement is a key event in cancer metastasis. However, the significance of microtubule (MT), one of the core components of cytoskeleton, in this process is only beginning to be revealed. Here, we find that the MT dynamics regulator end-binding protein 2 (EB2) is highly expressed in HCC and predicts poor prognosis of HCC patients. Functional studies show that EB2 overexpression promotes HCC proliferation, invasion and metastasis in vitro and in vivo, while EB2 knockdown has opposite results. Mechanistically, EB2 mediates MTs destabilization, increases Src (Src proto-oncogene non-receptor tyrosine kinase) activity, and thus facilitates extracellular signal-regulated kinase (ERK) signaling activation, which could in turn promote EB2 expression in HCC, eventually resulting in enhanced HCC proliferation, invasion and metastasis. Furthermore, U0126, a specific ERK inhibitor, could effectively inhibit EB2-mediated HCC proliferation and metastasis in vitro and in vivo. In conclusion, EB2 coordinates MT cytoskeleton and intracellular signal transduction, forming an EB2-MT-ERK positive feedback loop, to facilitate HCC proliferation, invasion and metastasis. EB2 could serve as a promising prognostic biomarker and potential therapeutic target for HCC; HCC patients with high EB2 expression may benefit from treatment with ERK inhibitors.
Collapse
|
3
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
4
|
Redox-dependent regulation of end-binding protein 1 activity by glutathionylation. SCIENCE CHINA-LIFE SCIENCES 2020; 64:575-583. [PMID: 32737853 DOI: 10.1007/s11427-020-1765-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Cytoskeletal proteins are susceptible to glutathionylation under oxidizing conditions, and oxidative damage has been implicated in several neurodegenerative diseases. End-binding protein 1 (EB1) is a master regulator of microtubule plus-end tracking proteins (+TIPs) and is critically involved in the control of microtubule dynamics and cellular processes. However, the impact of glutathionylation on EB1 functions remains unknown. Here we reveal that glutathionylation is important for controlling EB1 activity and protecting EB1 from irreversible oxidation. In vitro biochemical and cellular assays reveal that EB1 is glutathionylated. Diamide, a mild oxidizing reagent, reduces EB1 comet number and length in cells, indicating the impairment of microtubule dynamics. Three cysteine residues of EB1 are glutathionylated, with mutations of these three cysteines to serines attenuating microtubule dynamics but buffering diamide-induced decrease in microtubule dynamics. In addition, glutaredoxin 1 (Grx1) deglutathionylates EB1, and Grx1 depletion suppresses microtubule dynamics and leads to defects in cell division orientation and cell migration, suggesting a critical role of Grx1-mediated deglutathionylation in maintaining EB1 activity. Collectively, these data reveal that EB1 glutathionylation is an important protective mechanism for the regulation of microtubule dynamics and microtubule-based cellular activities.
Collapse
|
5
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
6
|
Mao BP, Ge R, Cheng CY. Role of microtubule +TIPs and -TIPs in spermatogenesis – Insights from studies of toxicant models. Reprod Toxicol 2020; 91:43-52. [DOI: 10.1016/j.reprotox.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
|
7
|
Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis. Breast Cancer Res Treat 2018; 173:573-583. [PMID: 30368744 DOI: 10.1007/s10549-018-5026-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/21/2018] [Indexed: 01/13/2023]
Abstract
PURPOSE The identification of molecular biomarkers for classification of breast cancer is needed to better stratify the patients and guide therapeutic decisions. The aim of this study was to investigate the value of MAPRE1 gene encoding microtubule-end binding proteins EB1 as a biomarker in breast cancer and evaluate whether combinatorial expression of MAPRE1 and MTUS1 gene encoding EB1-negative regulator ATIP3 may improve breast cancer diagnosis and prognosis. METHODS Probeset intensities for MAPRE1 and MTUS1 genes were retrieved from Exonhit splice array analyses of 45 benign and 120 malignant breast tumors for diagnostic purposes. Transcriptomic analyses (U133 Affymetrix array) of one exploratory cohort of 150 invasive breast cancer patients and two independent series of 130 and 155 samples were compared with clinical data of the patients for prognostic studies. A tissue microarray from an independent cohort of 212 invasive breast tumors was immunostained with anti-EB1 and anti-ATIP3 antibodies. RESULTS We show that MAPRE1 gene is a diagnostic and prognostic biomarker in breast cancer. High MAPRE1 levels correlate with tumor malignancy, high histological grade and poor clinical outcome. Combination of high-MAPRE1 and low-MTUS1 levels in tumors is significantly associated with tumor aggressiveness and reduced patient survival. IHC studies of combined EB1/ATIP3 protein expression confirmed these results. CONCLUSIONS These studies emphasize the importance of studying combinatorial expression of EB1 and ATIP3 genes and proteins rather than each biomarker alone. A population of highly aggressive breast tumors expressing high-EB1/low-ATIP3 may be considered for the development of new molecular therapies.
Collapse
|
8
|
Schellhaus AK, Moreno-Andrés D, Chugh M, Yokoyama H, Moschopoulou A, De S, Bono F, Hipp K, Schäffer E, Antonin W. Developmentally Regulated GTP binding protein 1 (DRG1) controls microtubule dynamics. Sci Rep 2017; 7:9996. [PMID: 28855639 PMCID: PMC5577222 DOI: 10.1038/s41598-017-10088-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022] Open
Abstract
The mitotic spindle, essential for segregating the sister chromatids into the two evolving daughter cells, is composed of highly dynamic cytoskeletal filaments, the microtubules. The dynamics of microtubules are regulated by numerous microtubule associated proteins. We identify here Developmentally regulated GTP binding protein 1 (DRG1) as a microtubule binding protein with diverse microtubule-associated functions. In vitro, DRG1 can diffuse on microtubules, promote their polymerization, drive microtubule formation into bundles, and stabilize microtubules. HeLa cells with reduced DRG1 levels show delayed progression from prophase to anaphase because spindle formation is slowed down. To perform its microtubule-associated functions, DRG1, although being a GTPase, does not require GTP hydrolysis. However, all domains are required as truncated versions show none of the mentioned activities besides microtubule binding.
Collapse
Affiliation(s)
- Anna Katharina Schellhaus
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, 72076, Tübingen, Germany.,Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Daniel Moreno-Andrés
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, 72076, Tübingen, Germany.,Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Mayank Chugh
- Cellular Nanoscience, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Hideki Yokoyama
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, 72076, Tübingen, Germany.,Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Athina Moschopoulou
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, 72076, Tübingen, Germany
| | - Suman De
- Cellular Nanoscience, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076, Tübingen, Germany
| | - Katharina Hipp
- Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076, Tübingen, Germany
| | - Erik Schäffer
- Cellular Nanoscience, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Wolfram Antonin
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, 72076, Tübingen, Germany. .,Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Nehlig A, Molina A, Rodrigues-Ferreira S, Honoré S, Nahmias C. Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell Mol Life Sci 2017; 74:2381-2393. [PMID: 28204846 PMCID: PMC11107513 DOI: 10.1007/s00018-017-2476-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
The regulation of microtubule dynamics is critical to ensure essential cell functions, such as proper segregation of chromosomes during mitosis or cell polarity and migration. End-binding protein 1 (EB1) is a plus-end-tracking protein (+TIP) that accumulates at growing microtubule ends and plays a pivotal role in the regulation of microtubule dynamics. EB1 autonomously binds an extended tubulin-GTP/GDP-Pi structure at growing microtubule ends and acts as a molecular scaffold that recruits a large number of regulatory +TIPs through interaction with CAP-Gly or SxIP motifs. While extensive studies have focused on the structure of EB1-interacting site at microtubule ends and its role as a molecular platform, the mechanisms involved in the negative regulation of EB1 have only started to emerge and remain poorly understood. In this review, we summarize recent studies showing that EB1 association with MT ends is regulated by post-translational modifications and affected by microtubule-targeting agents. We also present recent findings that structural MAPs, that have no tip-tracking activity, physically interact with EB1 to prevent its accumulation at microtubule plus ends. These observations point out a novel concept of "endogenous EB1 antagonists" and emphasize the importance of finely regulating EB1 function at growing microtubule ends.
Collapse
Affiliation(s)
- Anne Nehlig
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
| | - Angie Molina
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
- CBD, University of Toulouse-3, Toulouse, France
| | - Sylvie Rodrigues-Ferreira
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
| | - Stéphane Honoré
- Aix Marseille University, Inserm U-911, CRO2, Marseille, France
- Service Pharmacie, CHU Hôpital de La Timone, APHM, Marseille, France
| | - Clara Nahmias
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France.
- University Paris Saclay, 94800, Villejuif, France.
| |
Collapse
|
10
|
Cirillo L, Gotta M, Meraldi P. The Elephant in the Room: The Role of Microtubules in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:93-124. [DOI: 10.1007/978-3-319-57127-0_5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Lu J, Ma H, Lian S, Huang D, Lian M, Zhang Y, Huang J, Feng X. Clinical Significance and Prognostic Value of the Expression of LAMP3 in Oral Squamous Cell Carcinoma. DISEASE MARKERS 2017; 2017:1218254. [PMID: 28607528 PMCID: PMC5451762 DOI: 10.1155/2017/1218254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/05/2017] [Accepted: 04/30/2017] [Indexed: 01/27/2023]
Abstract
Recent studies demonstrated high expression of lysosome-associated membrane protein 3 (LAMP3) in a variety of malignancies including esophageal squamous cell carcinoma, gastrointestinal cancer, breast cancer, and cervical cancer and its involvement in several biological activities of tumor cells. However, the expression of LAMP3 and its value in oral squamous cell carcinoma (OSCC) remain unclear. In this study, we examined the expression of LAMP3 in OSCC tissue samples and investigated the relationship between LAMP3 and clinical characteristics of patients with OSCC. We examined mRNA and protein levels of LAMP3 in OSCC tissues and neighboring normal tissues using quantitative real-time polymerase chain reaction and immunohistochemistry analyses, respectively. Both the mRNA and protein levels of LAMP3 were significantly higher in OSCC tissues than in adjacent normal tissues. Chi-square analysis showed that the high LAMP3 expression was notably linked to the degree of tumor differentiation and advanced TNM stage. Univariate and multivariate analyses showed that the high LAMP3 expression was an independent prognostic marker in OSCC. Our results suggest that LAMP3 might act as a potential anticancer target and a prognostic marker in patients with OSCC.
Collapse
Affiliation(s)
- Jun Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hengcheng Ma
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shuijin Lian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ye Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfei Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|