1
|
Li J, Chen Q, Guo L, Li J, Jin B, Wu X, Shi Y, Xu H, Zheng Y, Wang Y, Du S, Li Z, Lu X, Sang X, Mao Y. In situ Detecting Lipids as Potential Biomarkers for the Diagnosis and Prognosis of Intrahepatic Cholangiocarcinoma. Cancer Manag Res 2022; 14:2903-2912. [PMID: 36187448 PMCID: PMC9524278 DOI: 10.2147/cmar.s357000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To quantitatively analyze lipid molecules in tumors and adjacent tissues of intrahepatic cholangiocarcinoma (ICC), to establish diagnostic model and to examine lipid changes with clinical classification. Patients and Methods We measured the quantity of 202 lipid molecules in 100 tumor observation points and 100 adjacent observation points of patients who were diagnosed with ICC. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were handles, along with Student’s t-test to identify specific metabolites. Prediction accuracy was validated in the validation set. Another logistic regression model was also established on the training set and validated on the validation set. Results Distinct separation was obtained from PCA and OPLS-DA model. Ten differentiating metabolites were identified using PCA, OPLA-DA and Lasso regression: [m/z 722.5130], [m/z 863.5655], [m/z 436.2834], [m/z 474.2626], [m/z 661.4813], [m/z 750.5443], [m/z 571.2889], [m/z 836.5420], [m/z 772.5862] and [m/z 478.2939]. Using logical regression, a diagnostic equation: y = 3.4*[m/z 436.2834] - 3.773*[m/z 474.2626] + 3.82*[m/z 661.4813] - 4.394*[m/z 863.5655] + 10.165 based on four metabolites successfully differentiated cancerous areas from adjacent normal areas. The AUROC of the model reached 0.993 (95% CI: 0.985–0.999) in the validation group. Compared with the adjacent non-tumor area, three characteristic metabolites FA (22:4), PA (P-18:0/0:0) and Glucosylceramide (d18:1/12:0) showed an increasing trend from stage I to stage II, while seven other metabolites LPA(16:0), PE(34:2), PE(36:4), PE(38:3), PE(40:6), PE(40:5) and LPE(16:0) showed a decreasing trend from stage I to stage II. Conclusion We successfully identified lipid molecules in differentiating tumor tissue and adjacent tissue of ICC, established a discrimination logistic model which could be used as a classifier to classify tumor and non-tumor regions based on analysis in tumor margins and provided information for biomarker changes in ICC, and proposed to related lipid changes with clinical classification.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Qiao Chen
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Lei Guo
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Xiangan Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Yue Shi
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Yingyi Wang
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Correspondence: Shunda Du; Zhili Li, Email ;
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
2
|
Halvorsen TG, Levernæs MCS, Rosting C. Matrix-Assisted Ionization and Tandem Mass Spectrometry Capabilities in Protein Biomarker Characterization-An Initial Study Using the Small Cell Lung Cancer Biomarker Progastrin Releasing Peptide as a Model Compound. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:611-614. [PMID: 33382608 DOI: 10.1021/jasms.0c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This initial study evaluates vacuum matrix-assisted ionization (vMAI) mass spectrometry (MS) for identification and determination of tryptic peptides from the biomarker protein progastrin releasing peptide (ProGRP). Similar peptides and charge states were observed as in liquid chromatography (LC) electrospray ionization (ESI) MS. The prolonged ion duration in vMAI with similar charge states as in ESI was advantageous for determining the MS/MS fragmentation conditions compared to MAI. It is assumed that the vacuum ionization conditions lower the detection limits of the experiment. This may be the reason vMAI combined with high resolution MS enabled detection of tryptic peptides from more digested proteins than MAI selected reaction monitoring MS. Additionally, MAI ion mobility spectrometry MS (MAI-IMS-MS) was evaluated for differentiation of intact protein isoforms, successfully enabling differentiation of the isoforms by drift time selection. Examples are both shown for model proteins bovine serum albumin, cytochrome C, and lysozyme and the clinically relevant small cell lung cancer protein biomarker ProGRP, which exists in three isoforms. Coupling with the vacuum ionization conditions using a dedicated vacuum-probe source MAI enables information to be extracted readily as with conventional approaches, just faster.
Collapse
Affiliation(s)
| | | | - Cecilie Rosting
- Department of Pharmacy, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
3
|
Alexovič M, Urban PL, Tabani H, Sabo J. Recent advances in robotic protein sample preparation for clinical analysis and other biomedical applications. Clin Chim Acta 2020; 507:104-116. [PMID: 32305536 DOI: 10.1016/j.cca.2020.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Discovery of new protein biomarker candidates has become a major research goal in the areas of clinical chemistry, analytical chemistry, and biomedicine. These important species constitute the molecular target when it comes to diagnosis, prognosis, and further monitoring of disease. However, their analysis requires powerful, selective and high-throughput sample preparation and product (analyte) characterisation approaches. In general, manual sample processing is tedious, complex and time-consuming, especially when large numbers of samples have to be processed (e.g., in clinical studies). Automation via microtiter-plate platforms involving robotics has brought improvements in high-throughput performance while comparable or even better precisions and repeatability (intra-day, inter-day) were achieved. At the same time, waste production and exposure of laboratory personnel to hazards were reduced. In comprehensive protein analysis workflows (e.g., liquid chromatography-tandem mass spectrometry analysis), sample preparation is an unavoidable step. This review surveys the recent achievements in automation of bottom-up and top-down protein and/or proteomics approaches. Emphasis is put on high-end multi-well plate robotic platforms developed for clinical analysis and other biomedical applications. The literature from 2013 to date has been covered.
Collapse
Affiliation(s)
- Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, 04011 Košice, Slovakia.
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Hadi Tabani
- Department of Environmental Geology, Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, 04011 Košice, Slovakia
| |
Collapse
|
4
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
5
|
Pedde RD, Li H, Borchers CH, Akbari M. Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics. Trends Biotechnol 2017; 35:954-970. [PMID: 28755975 DOI: 10.1016/j.tibtech.2017.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022]
Abstract
Interfacing mass spectrometry (MS) with microfluidic chips (μchip-MS) holds considerable potential to transform a clinician's toolbox, providing translatable methods for the early detection, diagnosis, monitoring, and treatment of noncommunicable diseases by streamlining and integrating laborious sample preparation workflows on high-throughput, user-friendly platforms. Overcoming the limitations of competitive immunoassays - currently the gold standard in clinical proteomics - μchip-MS can provide unprecedented access to complex proteomic assays having high sensitivity and specificity, but without the labor, costs, and complexities associated with conventional MS sample processing. This review surveys recent μchip-MS systems for clinical applications and examines their emerging role in streamlining the development and translation of MS-based proteomic assays by alleviating many of the challenges that currently inhibit widespread clinical adoption.
Collapse
Affiliation(s)
- R Daniel Pedde
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada
| | - Huiyan Li
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada; Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montreal, QC, H4A 3T2, Canada; Proteomics Centre, Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada.
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Centre for Biomedical Research (CBR), University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
6
|
Zamfir AD. Microfluidics-Mass Spectrometry of Protein-Carbohydrate Interactions: Applications to the Development of Therapeutics and Biomarker Discovery. Methods Mol Biol 2017; 1647:109-128. [PMID: 28808998 DOI: 10.1007/978-1-4939-7201-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The functional interactions of carbohydrates and their protein receptors are the basis of biological events critical to the evolution of pathological states. Hence, for the past years, such interactions have become the focus of research for the development of therapeutics and discovery of novel glycan biomarkers based on their binding affinity. Due to the high sensitivity, throughput, reproducibility, and capability to ionize minor species in heterogeneous mixtures, microfluidics-mass spectrometry (MS) has recently emerged as a method of choice in protein-glycan interactomics. In this chapter, a straightforward microfluidics-based MS methodology for the assessment of protein-glycan interactions is presented. The general protocol encompasses: (1) submission of the interacting partners to a binding assay under conditions mimicking the in vivo environment; and (2) screening of the reaction products and their structural characterization by fully automated chip-nanoelectrospray (nanoESI) MS and multistage MS. The first section of the chapter is devoted to describing a method that enables the study of protein-oligosaccharide interactions by chip-nanoESI quadrupole time-of-flight (QTOF) MS and top-down complex analysis by collision-induced dissociation (CID). This section provides the protocol for the determination of the complex formed by standard β-lactoglobulin (BLG) with maltohexaose (Glc6) and recommends as a concrete application the study of the interaction between BLG extracted from human milk with Glc6, considered a ligand able to reduce the allergenicity of this protein. The second part is dedicated to presenting the protocols for the binding assay followed by chip-nanoESI ion trap (ITMS) and electron transfer dissociation (ETD) in combination with CID for protein-ganglioside interactions, using as an example the B subunit of cholera toxin (Ctb5) in interaction with comercially available GM1 species. The methodology described may be successfully applied to native ganglioside mixtures from human brain, in particular for discovery of biomarkers on the basis of their binding affinity.
Collapse
Affiliation(s)
- Alina D Zamfir
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str.1, 300224, Timisoara, Romania.
| |
Collapse
|
7
|
Cifani P, Kentsis A. Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics 2016; 17. [PMID: 27775219 DOI: 10.1002/pmic.201600079] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022]
Abstract
Given superior analytical features, MS proteomics is well suited for the basic investigation and clinical diagnosis of human disease. Modern MS enables detailed functional characterization of the pathogenic biochemical processes, as achieved by accurate and comprehensive quantification of proteins and their regulatory chemical modifications. Here, we describe how high-accuracy MS in combination with high-resolution chromatographic separations can be leveraged to meet these analytical requirements in a mechanism-focused manner. We review the quantification methods capable of producing accurate measurements of protein abundance and posttranslational modification stoichiometries. We then discuss how experimental design and chromatographic resolution can be leveraged to achieve comprehensive functional characterization of biochemical processes in complex biological proteomes. Finally, we describe current approaches for quantitative analysis of a common functional protein modification: reversible phosphorylation. In all, current instrumentation and methods of high-resolution chromatography and MS proteomics are poised for immediate translation into improved diagnostic strategies for pediatric and adult diseases.
Collapse
Affiliation(s)
- Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pediatrics, Weill Cornell College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
Abstract
Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient’s response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient’s condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate.
Collapse
|
9
|
Tebani A, Afonso C, Marret S, Bekri S. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations. Int J Mol Sci 2016; 17:ijms17091555. [PMID: 27649151 PMCID: PMC5037827 DOI: 10.3390/ijms17091555] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, 76031 Rouen, France.
- Normandie University, UNIROUEN, INSERM, CHU Rouen, Laboratoire NeoVasc ERI28, 76000 Rouen, France.
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Carlos Afonso
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Stéphane Marret
- Normandie University, UNIROUEN, INSERM, CHU Rouen, Laboratoire NeoVasc ERI28, 76000 Rouen, France.
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76031 Rouen, France.
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, 76031 Rouen, France.
- Normandie University, UNIROUEN, INSERM, CHU Rouen, Laboratoire NeoVasc ERI28, 76000 Rouen, France.
| |
Collapse
|
10
|
Wallemacq P. Mass spectrometry in laboratory medicine: High-tech now meeting the needs of routine laboratory testing. Clin Biochem 2016; 49:945-6. [DOI: 10.1016/j.clinbiochem.2016.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|